OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 23, Iss. 14 — Jul. 15, 1998
  • pp: 1075–1077

Mueller matrix for characterization of one-dimensional rough perfectly reflecting surfaces in a conical configuration

R. E. Luna, S. E. Acosta-Ortiz, and L.-F. Zou  »View Author Affiliations

Optics Letters, Vol. 23, Issue 14, pp. 1075-1077 (1998)

View Full Text Article

Acrobat PDF (299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretical results of the use of a Mueller matrix to characterize a one-dimensional rough perfectly reflecting, single-scattering surface in a conical configuration are presented. The conical Mueller matrix (CMM) is derived from the known Mueller matrix of this kind of surface in the plane of incidence [the plane Mueller matrix (PMM)]. The key argument is that, as the PMM is considered to be a Mueller–Jones matrix, an appropriate rotation of the complex amplitude matrix provides the conic Mueller matrix.

© 1998 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.5430) Physical optics : Polarization
(290.5880) Scattering : Scattering, rough surfaces

R. E. Luna, S. E. Acosta-Ortiz, and L.-F. Zou, "Mueller matrix for characterization of one-dimensional rough perfectly reflecting surfaces in a conical configuration," Opt. Lett. 23, 1075-1077 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. M. Soto-Crespo and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 6, 367 (1989).
  2. A. A. Maradudin, T. R. Michel, A. R. McGurn, and E. R. Méndez, Ann. Phys. (New York) 203, 255 (1990).
  3. N. C. Bruce, A. J. Sant, and J. C. Dainty, Opt. Commun. 88, 471 (1992).
  4. M. E. Knotts, T. R. Michel, and K. A. O’Donnell, J. Opt. Soc. Am. A 10, 928 (1993).
  5. K. A. O’Donnell and M. E. Knotts, J. Opt. Soc. Am. A 8, 1126 (1991).
  6. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  7. E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass. 1963), pp. 135–143.
  8. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941) ; 32, 486 (1942); 37, 107 (1947).
  9. R. Barakat, Opt. Commun. 38, 159 (1981).
  10. K. Kim, L. Mandel, and E. Wolf, J. Opt. Soc. Am. A 4, 433 (1987).
  11. D. G. M. Anderson and R. Barakat, J. Opt. Soc. Am. A 8, 2305 (1994).
  12. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980), p. 31.
  13. D. Maystre and R. Petit, J. Spectrosc. Soc. Jpn. 23, Suppl. 61 (1974).
  14. D. Maystre and R. Petit, Opt. Commun. 5, 35 (1972).
  15. R. A. Depine, Opt. Lett. 16, 1457 (1991).
  16. R. A. Depine, J. Opt. Soc. Am. A 10, 920 (1993).
  17. A. R. McGurn and A. A. Maradudin, J. Opt. Soc. Am. B 10, 539 (1993).
  18. R. A. Depine and D. C. Skigin, J. Mod. Opt. 43, 543 (1996).
  19. R. E. Luna and E. R. Méndez, Opt. Lett. 20, 657 (1995).
  20. R. E. Luna, Opt. Lett. 21, 1418 (1996).
  21. G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited