OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 23, Iss. 21 — Nov. 1, 1998
  • pp: 1639–1641

Design of diffractive axicons for partially coherent light

Sergei Yu. Popov and Ari T. Friberg  »View Author Affiliations

Optics Letters, Vol. 23, Issue 21, pp. 1639-1641 (1998)

View Full Text Article

Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel method of designing diffractive axicons for use in spatially partially coherent illumination. The design procedure is based on the results obtained by the stationary-phase method. The technique leads to a coherence-dependent differential equation with appropriate boundary conditions for the axicon phase function. We demonstrate the method with annular-aperture axicons generating extended focal line segments of uniform on-axis intensity.

© 1998 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(050.1970) Diffraction and gratings : Diffractive optics
(110.2990) Imaging systems : Image formation theory

Sergei Yu. Popov and Ari T. Friberg, "Design of diffractive axicons for partially coherent light," Opt. Lett. 23, 1639-1641 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Z. Jaroszewicz, Axicons: Design and Propagation Properties, Vol. 5 of Research & Development Treatises (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1997).
  2. V. P. Koronkevich, I. A. Mikhaltsova, E. G. Churin, and Yu. I. Yurlov, Appl. Opt. 34, 5761 (1995).
  3. N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 88, 326 (1992).
  4. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, and S. Bara, Appl. Opt. 31, 5326 (1992).
  5. J. Sochacki, Z. Jaroszewicz, L. R. Staronski, and A. Kolodziejczyk, J. Opt. Soc. Am. A 10, 1765 (1993).
  6. Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk, and L. R. Staronski, Opt. Lett. 18, 1893 (1993).
  7. S. Yu. Popov and A. T. Friberg, Pure Appl. Opt. 7, 537 (1998).
  8. A. T. Friberg, J. Opt. Soc. Am. A 13, 743 (1996).
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), Secs. 4.3 and 4.4.
  10. S. Yu. Popov and A. T. Friberg, Opt. Eng. 34, 2567 (1995).
  11. A. T. Friberg and S. Yu. Popov, Appl. Opt. 35, 3039 (1996).
  12. Z. Jaroszewicz, J. F. Roman Dopato, and C. Gomez-Reino, Appl. Opt. 35, 1025 (1996).
  13. A. T. Friberg and S. Yu. Popov, in Diffractive Optics: Design, Fabrication, and Applications, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 224.
  14. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie, Berlin, 1997).
  15. One might argue that C1 could be determined from energy conservation. This is not so simple, however, since the integral of I(0, z) over the image segment along the z axis has no obvious physical meaning [cf. Ref. 4 and L. R. Staronski, J. Sochacki, Z. Jaroszewicz, A. Kolodziejczyk, J. Opt. Soc. Am. A 9, 2091 (1992). Considerations of energy conservation must be based on the energy-flux vector.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited