OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 23, Iss. 24 — Dec. 15, 1998
  • pp: 1892–1894

Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics

Yasunori Furukawa, Kenji Kitamura, Shunji Takekawa, Kazuo Niwa, and Hideki Hatano  »View Author Affiliations

Optics Letters, Vol. 23, Issue 24, pp. 1892-1894 (1998)

View Full Text Article

Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photorefractive damage, optical absorption, photoconductivities, and photogalvanic currents of stoichiometric LiNbO3 single crystals with different Mg doping levels have been investigated. Nominally pure stoichiometric LiNbO3 shows lower photorefractive damage resistance than congruent crystal; however, stoichiometric crystals doped with MgO of more than 1.8 mol. % exhibit no measurable photorefractive damage at 532 nm to intensities of as much as 8 MW/cm2 . This remarkable damage resistance can be attributed not only to increased photoconductivity but also to decreased photogalvanic current. Stoichiometric Mg:LiNbO3 also demonstrates the shortest absorption edge, 302 nm, and a single-domain nature with low scattering losses.

© 1998 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5330) Nonlinear optics : Photorefractive optics
(260.5150) Physical optics : Photoconductivity
(300.1030) Spectroscopy : Absorption

Yasunori Furukawa, Kenji Kitamura, Shunji Takekawa, Kazuo Niwa, and Hideki Hatano, "Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics," Opt. Lett. 23, 1892-1894 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Mizuuchi, K. Yamamoto, and M. Kato, Electron. Lett. 25, 731 (1997).
  2. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 20, 52 (1995).
  3. D. A. Bryan, R. Gerson and H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).
  4. Y. Furukawa, M. Sato, F. Nitanda, and K. Ito, J. Cryst. Growth 99, 832 (1990).
  5. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
  6. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Gunter, J. Appl. Phys. 82, 1006 (1997).
  7. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, Appl. Phys. A 56, 103 (1993).
  8. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, J. Solid State Chem. 118, 148 (1995).
  9. A. M. Glass, J. Electron. Mater. 4, 915 (1975).
  10. Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, and S. Kimura, J. Phys. Condens. Matter 7, 3627 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited