OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 23, Iss. 3 — Feb. 1, 1998
  • pp: 198–200

Application of optimization algorithms to the design of diffractive optical elements for custom laser resonators

Ian M. Barton and Mohammad R. Taghizadeh  »View Author Affiliations

Optics Letters, Vol. 23, Issue 3, pp. 198-200 (1998)

View Full Text Article

Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report what we believe to be the first applications of numerical optimization algorithms to the design of diffractive elements that customize the fundamental mode profile of a laser system. Standard design techniques treat these elements as specific phase-conjugation devices, which leads to performance loss when they are quantized to permit fabrication. Numerical optimization can account for quantization of the element to increase the effective performance. Also, it is shown that allowing a slight increase in the intrinsic loss of the cavity can substantially increase the fidelity of the fundamental mode of the customized cavity. The good discrimination qualities of the mode-selection elements are shown to be unaffected by this process.

© 1998 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(050.2230) Diffraction and gratings : Fabry-Perot
(140.3410) Lasers and laser optics : Laser resonators
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3570) Lasers and laser optics : Lasers, single-mode

Ian M. Barton and Mohammad R. Taghizadeh, "Application of optimization algorithms to the design of diffractive optical elements for custom laser resonators," Opt. Lett. 23, 198-200 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited