OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 23, Iss. 5 — Mar. 1, 1998
  • pp: 313–315

Modal decomposition of partially coherent flat-topped beams produced by multimode lasers

Riccardo Borghi and Massimo Santarsiero  »View Author Affiliations


Optics Letters, Vol. 23, Issue 5, pp. 313-315 (1998)
http://dx.doi.org/10.1364/OL.23.000313


View Full Text Article

Acrobat PDF (253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple mathematical model giving a possible description of a partially coherent light beam exhibiting a flat-topped transverse intensity profile. Such a model allows us to deduce the modal distribution inside a multimode stable optical cavity, assuming that the modes are of the Hermite–Gauss type. The analytical expression used to represent flat-topped profiles is of the flattened Gaussian type and leads to an exact, closed-form expression for the M2 factor of the output beam. An analogous procedure could be used to treat the general problem of deducing the modal distribution inside a laser cavity starting from intensity measurements of the output beam.

© 1998 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(140.3460) Lasers and laser optics : Lasers

Citation
Riccardo Borghi and Massimo Santarsiero, "Modal decomposition of partially coherent flat-topped beams produced by multimode lasers," Opt. Lett. 23, 313-315 (1998)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-23-5-313


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).
  3. E. Wolf and G. S. Agarwal, J. Opt. Soc. Am. A 1, 541 (1984).
  4. P. Spano, Opt. Commun. 33, 265 (1980).
  5. E. G. Johnson, Jr., Appl. Opt. 25, 2967 (1986).
  6. J. Turunen, E. Tervonen, and A. T. Friberg, Opt. Lett. 14, 627 (1989).
  7. A. T. Friberg, E. Tervonen, and J. Turunen, J. Opt. Soc. Am. A 11, 1818 (1994).
  8. E. Collett and E. Wolf, Opt. Lett. 2, 27 (1978).
  9. F. Gori, Opt. Commun. 34, 301 (1980).
  10. A. Starikov and E. Wolf, J. Opt. Soc. Am. A 72, 923 (1982).
  11. E. Tervonen, J. Turunen, and A. T. Friberg, Appl. Phys. B 49, 409 (1989).
  12. A. E. Siegman and S. W. Townsend, IEEE J. Quantum Electron. 29, 1212 (1993).
  13. F. Gori, Opt. Commun. 107, 335 (1994).
  14. V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, D. Ambrosini, and G. Schirripa Spagnolo, J. Opt. Soc. Am. A 13, 1385 (1996).
  15. S.-A. Amarande, Opt. Commun. 129, 311 (1996).
  16. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
  17. A. E. Siegman, in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2 (1990).
  18. F. Gori, in Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), p. 363.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited