OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 23, Iss. 5 — Mar. 1, 1998
  • pp: 361–363

Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading

Alphan Sennaroglu and Baris Pekerten  »View Author Affiliations

Optics Letters, Vol. 23, Issue 5, pp. 361-363 (1998)

View Full Text Article

Acrobat PDF (257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the results of a novel experimental and numerical investigation aimed at minimizing thermal loading effects in room-temperature Cr4+: forsterite lasers. In the model we numerically calculated the incident pump power required for oscillation threshold to be attained by taking into account pump absorption saturation, pump-induced thermal gradients inside the crystal, and the temperature dependence of the upper-state fluorescence lifetime. Excellent agreement was obtained between model predictions and experimental threshold data. We then used the model to calculate the optimum absorption coefficient that minimizes the incident threshold pump power. At a crystal boundary temperature of 15 °C the optimum value of the absorption coefficient was numerically determined to be 0.64 cm-1 . Such optimization studies, which are readily applicable to other laser systems, should make a significant contribution to the improvement of the power performance of Cr4+: forsterite lasers at room temperature.

© 1998 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.6810) Lasers and laser optics : Thermal effects
(160.6990) Materials : Transition-metal-doped materials

Alphan Sennaroglu and Baris Pekerten, "Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading," Opt. Lett. 23, 361-363 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, Appl. Phys. Lett. 52, 1040 (1988).
  2. A. Sennaroglu, C. R. Pollock, and H. Nathel, IEEE J. Quantum Electron. 30, 1851 (1994).
  3. A. Sennaroglu and M. Burak Yilmaz, in Advanced Solid-State Lasers, C. R. Pollock W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 132.
  4. Y. P. Tong, P. M. W. French, J. R. Taylor, and J. O. Fujimoto, Opt. Commun. 136, 235 (1997).
  5. J. M. Evans, V. Petricevic, A. B. Bykov, A. Delgado, and R. R. Alfano, Opt. Lett. 22, 1171 (1997).
  6. T. J. Carrig and C. R. Pollock, IEEE J. Quantum Electron. 29, 2835 (1993).
  7. V. Petricevic, S. K. Gayen, and R. R. Alfano, Opt. Lett. 14, 612 (1989).
  8. V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, and A. P. Shkandarevich, in Advanced Solid-State Lasers, G. Dube L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 26.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited