OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 23, Iss. 5 — Mar. 1, 1998
  • pp: 367–369

Continuous-wave Raman laser in H2

J. K. Brasseur, K. S. Repasky, and J. L. Carlsten  »View Author Affiliations

Optics Letters, Vol. 23, Issue 5, pp. 367-369 (1998)

View Full Text Article

Acrobat PDF (233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent developments in high-finesse cavities now make broadly tunable, continuous-wave Raman lasers possible. The design and preliminary characterization of what is to the authors’ knowledge the first continuous-wave Raman laser in H2 are presented. The threshold is currently at 2 mW of pump, making diode laser pumping possible. The maximum photon conversion efficiency observed was 35% at 7.6 mW of pump power.

© 1998 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4780) Lasers and laser optics : Optical resonators
(190.5650) Nonlinear optics : Raman effect
(290.5860) Scattering : Scattering, Raman

J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, "Continuous-wave Raman laser in H2," Opt. Lett. 23, 367-369 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
  2. M. Poelker and P. Kumar, Opt. Lett. 17, 399 (1992).
  3. G. Grynberg, E. Giacobino, and F. Biraben, Opt. Commun. 36, 403 (1981).
  4. S. N. Jabr, Opt. Lett. 12, 690 (1987).
  5. P. Franke, A. Feirisch, F. Riehle, K. Zhao, and J. Helmcke, Appl. Opt. 28, 3702 (1989).
  6. X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. M. Warrington, Opt. Commun. 96, 99 (1993).
  7. P. Persephonis, S. V. Cherikov, and J. R. Taylor, Electron. Lett. 32, 1486 (1996).
  8. K. S. Repasky, L. E. Watson, J. L. Carlsten, Appl. Opt. 34, 2615 (1995).
  9. K. S. Repasky, J. G. Wessel, and J. L. Carlsten, Appl. Opt. 35, 609 (1996).
  10. Recently cw optical parametric oscillators were also shown to produce laser light in this part of the spectrum.,
  11. M. Scheidt, B. Beier, K.-J. Boller, and R. Wallenstein, Opt. Lett. 22, 1287 (1997).
  12. W. R. Boseburg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336 (1996).
  13. P. Rabinowitz, A. Stein, R. Brickman, and A. Kaldor, Opt. Lett. 3, 147 (1978).
  14. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
  15. The intensity buildup inside a high-finesse cavity can be found from the standard electric field summation used in standard optics texts. See, for example, E. Hecht A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), p. 305.
  16. The Lightwave Electronics laser used in this experiment has 200 mW of single-frequency, single-mode optical power and a linewidth of <10kHz.
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
  18. The high-reflectivity mirrors were purchased from Research Electro-Optics, Boulder, Colo. These mirrors were exposed to pump oil and were cleaned, resulting in an absorption of 78 parts in 106. With new mirrors with absorption of 15 parts in 106 the threshold will be lower and the output higher.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited