OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 23, Iss. 6 — Mar. 15, 1998
  • pp: 439–441

Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)- L-prolinol crystal

G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood  »View Author Affiliations


Optics Letters, Vol. 23, Issue 6, pp. 439-441 (1998)
http://dx.doi.org/10.1364/OL.23.000439


View Full Text Article

Acrobat PDF (305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We exploit the high second-order susceptibility of the organic crystal N-(4–nitrophenyl)-L-prolinol to accomplish, through a cascaded second-order process, wavelength conversion of a signal pulse (from 1.16 to 1.14 µm) under the action of a pump pulse (at 1.15 µm). In a 2.8-mm-thick crystal, wavelength conversion with unit gain was obtained with a pump peak intensity as low as 9 MW/cm2 . At low intensities, in the limit of negligible conversion where the cascading effect can be described through an effective third-order susceptibility, we derive |x(3)eff | ≈ 2.4 × 10-17 m2/V2, which is ~102 larger than the nonresonant x(3) of conjugated polymers or semiconductors.

© 1998 Optical Society of america

OCIS Codes
(160.4890) Materials : Organic materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.

Citation
G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, "Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)- L-prolinol crystal," Opt. Lett. 23, 439-441 (1998)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-23-6-439


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. A. Ostrovskij, JEPT Lett. 10, 281 (1967); R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzele, Opt. Lett. 17, 28 (1992).
  2. G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
  3. J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
  4. I. Ledoux, J. Badan, J. Zyss, A. Migus, J. Etchepare, G. Grillon, and A. Antonetti, J. Opt. Soc. Am. B 4, 987 (1987).
  5. I. Ledoux, C. Lepers, A. Perigaud, J. Badan, and J. Zyss, Opt. Commun. 80, 149 (1990).
  6. Z. Wang, D. J. Hagan, E. W. Van Stryland, J. Zyss, P. Vidakovik, and W. Torruellas, J. Opt. Soc. Am. B 14, 76 (1997).
  7. R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B 39, 3327 (1989).
  8. G. P. Banfi, V. Degiorgio, D. Fortusini, and H. M. Tan, Appl. Phys. Lett. 67, 13 (1995).
  9. E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
  10. H. Tan, G. P. Banfi, and A. Tomaselli, Appl. Phys. Lett. 63, 2472 (1993).
  11. S. Nitti, H. M. Tan, G. P. Banfi, and V. Degiorgio, Opt. Commun. 106, 263 (1994).
  12. B. Y. Shekunov, E. Shepherd, J. N. Sherwood, and G. S. Simpson, J. Phys. Chem. 99, 7130 (1995).
  13. We define c(3) according to P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990). To convert them to the present notation, multiply the values of c(3) given in Refs. 10 and 11 by 2/3.
  14. K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited