OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 23, Iss. 8 — Apr. 15, 1998
  • pp: 570–572

Lyapunov stability criteria for zonal adaptive-optics systems

Walter J. Wild  »View Author Affiliations


Optics Letters, Vol. 23, Issue 8, pp. 570-572 (1998)
http://dx.doi.org/10.1364/OL.23.000570


View Full Text Article

Acrobat PDF (317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lyapunov stability criteria are derived for a first-order closed-loop adaptive-optics servo system, resulting in a linear matrix equation that includes the system geometry, servo parameters, and wave-front reconstruction matrix. It is demonstrated that instability zones depend on the choice of matrix estimator and the servo-loop gain. Divergence of the error propagator gives results that are consistent with the Lyapunov equation. The significance of these results is discussed.

© 1998 Optical Society of America

OCIS Codes
(000.3870) General : Mathematics
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

Citation
Walter J. Wild, "Lyapunov stability criteria for zonal adaptive-optics systems," Opt. Lett. 23, 570-572 (1998)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-23-8-570


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. J. Wild, E. J. Kibblewhite, and R. Vuilleumier, Opt. Lett. 20, 955 (1985).
  2. W. J. Wild, E. J. Kibblewhite, R. Vuilleumier, V. Scor, F. Shi, and N. Farmiga, Proc. SPIE 2534, 194 (1995).
  3. Z. Gajic and M. T. J. Qureshi, Lyapunov Matrix Equation in System Stability and Control (Academic, San Diego, Calif., 1995).
  4. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge U. Press, Cambridge, 1991).
  5. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge U. Press, Cambridge, 1985).
  6. S. Lefschetz, Differential Equations: Geometric Theory (Dover, New York, 1977).
  7. W. J. Wild, Proc. SPIE 3126, 278 (1997).
  8. W. J. Wild, Opt. Lett. 21, 1433 (1996).
  9. W. J. Wild, E. Kibblewhite, and V. Scor, Proc. SPIE 2201, 726 (1994).
  10. J. Herrmann, J. Opt. Soc. Am. 70, 28 (1980).
  11. W. Moretti, G. M. Cochran, K. E. Steinhoff, and G. A. Tyler, Technical Report TR-881 (Optical Sciences Company, Anaheim, Calif., 1988).
  12. A. S. Willsky, Proc. IEEE 66, 996 (1978).
  13. D. G. Leunberger, Optimization by Vector Space Methods (Wiley, New York, 1969).
  14. S. Boyd, L. El Ghaoui, E. Faron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited