Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Guided-mode resonance Brewster filter

Not Accessible

Your library or personal account may give you access

Abstract

A new type of optical filter is predicted theoretically and verified experimentally. The filter operates under guided-mode resonance conditions in a thin-film waveguide grating. A high-efficiency reflection filter response is produced at the Brewster angle at which TM reflection is classically prohibited. Low-reflectance sidebands are obtained that are adjacent to the resonance peak induced by the Brewster effect in the neighborhood of the resonance peak. A double-layer waveguide grating yields 94% experimental reflectance at the thin-film Brewster angle for a Gaussian laser beam with TM polarization at the 1064-nm wavelength.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
High-efficiency guided-mode resonance filter

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson
Opt. Lett. 23(19) 1556-1558 (1998)

Resonant Brewster filters with absentee layers

D. Shin, Z. S. Liu, and R. Magnusson
Opt. Lett. 27(15) 1288-1290 (2002)

Triple-layer guided-mode resonance Brewster filter consisting of a homogenous layer and coupled gratings with equal refractive index

Xin Liu, Shuqi Chen, Weiping Zang, and Jianguo Tian
Opt. Express 19(9) 8233-8241 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved