OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 23, Iss. 9 — May. 1, 1998
  • pp: 700–702

Normal-incidence guided-mode resonant grating filters: design and experimental demonstration

David L. Brundrett, Elias N. Glytsis, and Thomas K. Gaylord  »View Author Affiliations


Optics Letters, Vol. 23, Issue 9, pp. 700-702 (1998)
http://dx.doi.org/10.1364/OL.23.000700


View Full Text Article

Acrobat PDF (1476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Guided-mode resonant grating filters have numerous applications. However, in weakly modulated gratings designed for use at normal incidence, the filtering resonance of these subwavelength-period devices splits for angles of incidence that are even slightly off normal incidence. Strongly modulated gratings are designed that essentially overcome this practical problem near normal incidence. In addition, these gratings can have, by design, either broad or narrow spectral characteristics. An experimental demonstration (1.5–2.0-μ m wavelength range) of such a normal-incidence guided-mode resonant silicon grating upon a sapphire substrate is presented. The measured reflection resonance had a FWHM of 67–100 nm for angles of incidence of 0–8° and peak efficiency of ~80% .

© 1998 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.2770) Diffraction and gratings : Gratings
(120.2440) Instrumentation, measurement, and metrology : Filters
(260.5740) Physical optics : Resonance

Citation
David L. Brundrett, Elias N. Glytsis, and Thomas K. Gaylord, "Normal-incidence guided-mode resonant grating filters: design and experimental demonstration," Opt. Lett. 23, 700-702 (1998)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-23-9-700


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
  2. R. Magnusson and S. S. Wang, Appl. Opt. 34, 8106 (1995).
  3. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, Opt. Lett. 21, 1564 (1996).
  4. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, J. Opt. Soc. Am. A 7, 1470 (1990).
  5. S. Peng and G. M. Morris, J. Opt. Soc. Am. A 13, 993 (1996).
  6. L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
  7. R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, IEEE Trans. Antenn. Propag. 42, 567 (1994).
  8. A. Sharon, D. Rosenblatt and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
  9. S. Peng and G. M. Morris, Opt. Lett. 21, 549 (1996).
  10. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
  11. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Appl. Opt. 32, 2695 (1994).
  12. M. Nevière, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), 123.
  13. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror or absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited