OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 24, Iss. 12 — Jun. 15, 1999
  • pp: 838–840

Converting Eu3+ between defect sites in BaFCl for persistent spectral hole burning

S. T. Li, G. K. Liu, and W. Zhao  »View Author Affiliations

Optics Letters, Vol. 24, Issue 12, pp. 838-840 (1999)

View Full Text Article

Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Persistent spectral hole burning (PSHB) is demonstrated in the 7 F05D0 optical transition of Eu3+ doped into crystals of BaFCl. For Eu3+ ions at two different lattice sites, persistent holes can be burned at temperatures below 77 K. The characteristics of the hole-burning process suggest that the observed PSHB effect is due to laser-excitation-induced site-to-site conversion. One type of Eu3+ site is converted into another type of defect site. This process is not optically reversible, and holes can be erased only when the temperature increases to 150 K.

© 1999 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(210.4680) Optical data storage : Optical memories
(210.4810) Optical data storage : Optical storage-recording materials
(260.5130) Physical optics : Photochemistry
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6500) Spectroscopy : Spectroscopy, time-resolved

S. T. Li, G. K. Liu, and W. Zhao, "Converting Eu3+ between defect sites in BaFCl for persistent spectral hole burning," Opt. Lett. 24, 838-840 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole-Burning: Science and Applications, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.
  2. U. P. Wild, S. Bernet, B. Kohler, and A. Renn, Pure Appl. Chem. 64, 1335 (1992).
  3. R. Jaaniso and H. Bill, Europhys. Lett. 16, 569 (1991).
  4. T. Schmidt, R. M. Macfarlane, and S. Voelker, Phys. Rev. B 50, 15707 (1994).
  5. Y. N. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, Appl. Phys. Lett. 68, 3677 (1996).
  6. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, J. Opt. Soc. Am. B 15, 2700 (1998).
  7. J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978).
  8. M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau, and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988).
  9. G. K. Liu and J. V. Beitz, Chem. Phys. Lett. 171, 335 (1990).
  10. W. Zhao, Z. F. Song, and M. Z. Su, J. Rare Earths 4, 241 (1992).
  11. R. M. Macfarlane, R. M. Shelby, A. Z. Genack, and D. A. Weitz, Opt. Lett. 5, 462 (1980).
  12. G. K. Liu and R. L. Cone, Phys. Rev. B 41, 6193 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited