OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 24, Iss. 17 — Sep. 1, 1999
  • pp: 1236–1238

Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity

I. Juwiler, A. Arie, A. Skliar, and G. Rosenman  »View Author Affiliations

Optics Letters, Vol. 24, Issue 17, pp. 1236-1238 (1999)

View Full Text Article

Acrobat PDF (79 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In standing-wave enhancement cavities for frequency doubling, second-harmonic fields are generated in both directions of propagation. To add the fields coherently, one should compensate for the phase shifts introduced by dispersive elements in the cavity. We experimentally demonstrate phase compensation in a compact standing-wave frequency-doubling cavity by use of a wedged periodically poled KTP crystal. The highest conversion efficiency and second-harmonic power obtained by pumping with a 1064-nm cw Nd:YAG laser were 69.4% and 268 mW, respectively.

© 1999 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4320) Optical devices : Nonlinear optical devices

I. Juwiler, A. Arie, A. Skliar, and G. Rosenman, "Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity," Opt. Lett. 24, 1236-1238 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
  2. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
  3. R. Paschotta, P. Kurz, R. Henking, S. Schiller, and J. Mlynek, Opt. Lett. 19, 1325 (1994).
  4. J. M. Yarborough, J. Falk, and C. M. Hitz, Appl. Phys. Lett. 18, 70 (1971).
  5. C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
  6. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, Opt. Lett. 17, 640 (1992).
  7. S. T. Yang, C. C. Pohalsky, E. K. Gustafson, R. L. Byer, R. S. Feigelson, R. J. Raymakers, and R. K. Route, Opt. Lett. 16, 1493 (1991).
  8. G. Imeshev, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 165 (1998).
  9. G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, Appl. Phys. Lett. 73, 3650 (1998).
  10. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
  11. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. 31, 97 (1983).
  12. E. S. Polzik and H. J. Kimble, Opt. Lett. 16, 1400 (1991).
  13. A. Arie, G. Rosenman, A. Korenfeld, A. Skliar, M. Oron, M. Katz, and D. Eger, Opt. Lett. 23, 28 (1998).
  14. K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, Opt. Lett. 21, 1999 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited