OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 24, Iss. 18 — Sep. 15, 1999
  • pp: 1278–1280

Microcavity lasing of optically excited cadmium sulfide thin films at room temperature

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai  »View Author Affiliations

Optics Letters, Vol. 24, Issue 18, pp. 1278-1280 (1999)

View Full Text Article

Acrobat PDF (85 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report what is believed to be the first observation of lasing of an optically pumped thin CdS film formed by laser ablation on glass. Laser action is observed at room temperature, and the emission peak is at 501 nm. X-ray diffraction shows that the polycrystalline films are of wurtzite structure and have (002) preferred orientation. Fabry–Perot laser modes are spaced 16 nm apart, indicating a cavity length of 2.9μm . The cavity is formed by consistently self-formed microcavities within the hexagonal lattice.

© 1999 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5560) Lasers and laser optics : Pumping
(310.6860) Thin films : Thin films, optical properties

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, "Microcavity lasing of optically excited cadmium sulfide thin films at room temperature," Opt. Lett. 24, 1278-1280 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. See the proceedings of the International II–VI Conferences, J. Cryst. Growth 159, (1996) and 184/185, (1998).
  2. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
  3. C. Bouchenaki, B. Ullrich, and J. P. Zielinger, J. Lumin. 48/49, 649 (1991).
  4. B. J. Feldman and J. A. Duisman, Appl. Phys. Lett. 37, 1092 (1981).
  5. O. Zelaya-Angel, A. E. Esparza-Gracia, A. E. Falcony, R. Lazada-Morales, and R. Ramirez-Bon, Solid State Commun. 94, 81 (1995).
  6. M. S. Brodin, N. I. Vitrikhovskii, A. A. Kypen, S. G. Shevel, and N. I. Yanushevskii, Phys. Status Solidi A 78, 349 (1983).
  7. V. Deneu, D. P. Degloria, A. Sanchez, F. Tong, and R. M. Osgood, Jr., Appl. Phys. Lett. 49, 546 (1986).
  8. F. H. Nicoll, Appl. Phys. Lett. 10, 69 (1967).
  9. K. Ushiku, M. Kawabe, K. Masuda, and S. Namba, Jpn. J. Appl. Phys. 13, 909 (1974).
  10. B. Ullrich, H. Sakai, N. M. Dushkina, H. Ezumi, S. Keitoku, and T. Kobayashi, Mater. Sci. Eng. B 47, 187 (1997).
  11. B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, Solid State Commun. 109, 757 (1999).
  12. H. S. Kwok, J. P. Zheng, S. Witanachchi, P. Mattocks, L. Shi, Q. Y. Ying, X. W. Wang, and D. T. Shaw, Appl. Phys. Lett. 52, 1096 (1988).
  13. R. Swanepoel, J. Phys. E 16, 1214 (1983).
  14. G. Perna, M. Ambrico, V. Capozzi, D. Smaldone, and R. Martino, J. Lumin. 72–74, 90 (1997).
  15. J. Singh, Semiconductor Optoelectronics (McGraw-Hill, New York, 1995), Chap. 4, p. 226.
  16. As discussed in the case of GaN-based structures; see S. Bidnyk, T. J. Schmidt, G. H. Park, and J. J. Song, Appl. Phys. Lett. 71, 729 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited