OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 24, Iss. 20 — Oct. 15, 1999
  • pp: 1416–1418

Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures

Ryan S. Bennink, Young-Kwon Yoon, Robert W. Boyd, and J. E. Sipe  »View Author Affiliations


Optics Letters, Vol. 24, Issue 20, pp. 1416-1418 (1999)
http://dx.doi.org/10.1364/OL.24.001416


View Full Text Article

Acrobat PDF (97 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metals typically have very large nonlinear susceptibilities (~106 times larger than those of typical dielectrics), but because they are nearly opaque their nonlinear properties are effectively inaccessible. We demonstrate numerically that a multilayer metal–dielectric structure in which the metal is the dominant nonlinear [χ(3)] material can have much larger intensity-dependent changes in the complex amplitude of the transmitted beam than a bulk sample containing the same thickness of metal. For 80 nm of copper the magnitude of the nonlinear phase shift is predicted to be as much as 40 times larger for the layered copper–silica sample, and the transmission is also greatly increased. The effective nonlinear refractive-index coefficient n2 of this composite material can be as large as (3+6ι)×10-9 cm 2/W , which is among the largest values for known, reasonably transmissive materials.

© 1999 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials

Citation
Ryan S. Bennink, Young-Kwon Yoon, Robert W. Boyd, and J. E. Sipe, "Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures," Opt. Lett. 24, 1416-1418 (1999)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-20-1416


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986).
  2. J. W. Haus, R. Inguva, and C. M. Bowden, Phys. Rev. A 40, 5729 (1989).
  3. A. E. Neeves and M. H. Birnboim, J. Opt. Soc. Am. B 6, 787 (1989).
  4. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, J. Opt. Soc. Am. B 11, 1236 (1994).
  5. L. Yang, K. Becker, F. M. Smith, R. H. Magruder III, R. F. Haglund, Jr., R. Dorsinville, R. R. Alfano, and R. A. Zuhr, J. Opt. Soc. Am. B 11, 457 (1994).
  6. D. D. Smith, G. L. Fischer, R. W. Boyd, and D. A. Gregory, J. Opt. Soc. Am. B 14, 1625 (1997).
  7. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
  8. D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).
  9. Layered geometries have also been studied in the context of all-dielectric nonlinear composite materials. See, for example, G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, Phys. Rev. Lett. 74, 1871 (1995) ; R. L. Nelson and R. W. Boyd, Appl. Phys. Lett. 74, 2417 (1999).
  10. The attenuation constant a=2(w/c)Im n is given by the intensity decay equation dI/dz=-aI, and the absorption constant g=(w/c)Im e is given by the steady-state Poynting theorem, dS/dz=-gcUE, where UE is the electric-field energy density.
  11. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  12. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, J. Appl. Phys. 83, 2377 (1998).
  13. M. J. Bloemer and M. Scalora, Appl. Phys. Lett. 72, 1676 (1998).
  14. D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985), p. 356.
  15. B. H. Billings, section ed., in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1982), Sec. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited