OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 24, Iss. 22 — Nov. 15, 1999
  • pp: 1629–1631

Lithographic antennas at visible frequencies

Christophe Fumeaux, Javier Alda, and Glenn D. Boreman  »View Author Affiliations


Optics Letters, Vol. 24, Issue 22, pp. 1629-1631 (1999)
http://dx.doi.org/10.1364/OL.24.001629


View Full Text Article

Acrobat PDF (82 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The response of antenna-coupled thin-film Ni–NiO–Ni diodes to 633-nm helium–neon laser radiation is investigated. Although these detectors and their integrated dipole antennas are optimized for the detection of mid-infrared radiation, a polarization dependence of the measured response to visible radiation is observed. The strongest signals are measured for the polarization parallel to the dipole antenna axis, which demonstrates antenna operation of the device in the visible in addition to the expected thermal and photoelectric effects. The connection structure of the diode also resonates and contributes to the polarization-dependent signal. The receiving area of the dipole antenna is approximately 2μm 2 .

© 1999 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1880) Detectors : Detection
(040.3060) Detectors : Infrared
(230.3990) Optical devices : Micro-optical devices
(230.5440) Optical devices : Polarization-selective devices

Citation
Christophe Fumeaux, Javier Alda, and Glenn D. Boreman, "Lithographic antennas at visible frequencies," Opt. Lett. 24, 1629-1631 (1999)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-22-1629


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. I. Wilke, W. Herrmann, and F. K. Kneubühl, Appl. Phys. B 58, 87 (1994).
  2. C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, Infrared Phys. Technol. 39, 123 (1998).
  3. E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, Appl. Phys. Lett. 59, 3225 (1991).
  4. D. B. Rutledge, S. E. Schwarz, and A. T. Adams, Appl. Phys. 18, 713 (1978).
  5. S. Wang, Appl. Phys. Lett. 28, 303 (1976).
  6. O. Acef, L. Hilico, M. Bahoura, F. Nez, and P. De Natale, Opt. Commun. 109, 428 (1994).
  7. B.-I. Twu and S. E. Schwarz, Appl. Phys. Lett. 25, 595 (1974).
  8. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, Phys. Rev. Lett. 76, 18 (1996).
  9. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
  10. I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubühl, Appl. Phys. A 58, 329 (1994).
  11. J. Alda, C. Fumeaux, I. Codreanu, J. A. Schaefer, and G. D. Boreman, Appl. Opt. 38, 3993 (1999).
  12. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1980), Chap. 9.
  13. M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, IEEE J. Quantum Electron. QE-14, 159 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited