Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Soot-velocity measurements by particle vaporization velocimetry

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a new imaging technique for velocity measurements in particle-laden flows. The technique, particle vaporization velocimetry, is a form of flow tagging based on laser vaporization of absorbing particles at defined locations in the flow. The locations of these tagged regions are then interrogated after a known delay to determine the convective velocity. Results are presented for vaporization of carbonaceous (soot) particles in a nonreacting gas jet and a hydrocarbon flame, with interrogation provided by either elastic scattering or laser-induced incandescence from the soot. The long lifetime of the tagged soot regions >2 ms allows measurements to be made over a wide range of velocities.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering

Gregory D. Yoder, Prasoon K. Diwakar, and David W. Hahn
Appl. Opt. 44(20) 4211-4219 (2005)

Laser-induced incandescence for soot diagnostics at high pressures

Max Hofmann, Wolfgang G. Bessler, Christof Schulz, and Helga Jander
Appl. Opt. 42(12) 2052-2062 (2003)

Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro
Appl. Opt. 34(30) 7083-7091 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved