OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 24, Iss. 4 — Feb. 15, 1999
  • pp: 235–237

Two-element dielectric antenna serially excited by optical wavelength multiplexing

E. E. Crisman, J. S. Derov, P.H. Carr, S. D. Mittleman, and D. D.-W. Liu  »View Author Affiliations

Optics Letters, Vol. 24, Issue 4, pp. 235-237 (1999)

View Full Text Article

Acrobat PDF (350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single pulsed laser beam containing multiple wavelengths (wavelength multiplexing) is employed to activate two semiconductor antennas in series. The dielectric nature of the semiconductors permits serial cascading of the antenna elements. Recently observed nonlinear characteristics of the radiated field as a function of the free carrier accelerating (bias) voltage are used to minimize the small interactions between elements. We demonstrate that the temporal electromagnetic radiation distribution of two serial antennas is sensitive to the three-dimensional pattern of the optical excitation source. One can, in turn, vary this distribution continuously by optical means to reconfigure the array.

© 1999 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.5140) Materials : Photoconductive materials
(260.5150) Physical optics : Photoconductivity
(350.4010) Other areas of optics : Microwaves

E. E. Crisman, J. S. Derov, P.H. Carr, S. D. Mittleman, and D. D.-W. Liu, "Two-element dielectric antenna serially excited by optical wavelength multiplexing," Opt. Lett. 24, 235-237 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. A. Gilbert and G. T. Pirrung, presented at the Sixth Annual ARPA Symposium on Photonic Systems for Antenna Applications, Monterey, Calif., March 4–7, 1996.
  2. H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Norwood, Mass., 1994).
  3. Ch. Fattinger and D. Grischkowsky, Appl. Phys. Lett. 54, 490 (1989).
  4. X.-C. Zhang and D. H. Auston, Appl. Phys. Lett. 59, 768 (1991).
  5. D. W. Liu, J. B. Thaxter, and D. F. Bliss, Opt. Lett. 20, 1544 (1995).
  6. D. Liu, D. Charette, M. Bergeron, H. Karwacki, S. Adams, and B. Lanning, IEEE Photon. Technol. Lett. 10, 716 (1998).
  7. D. W. Liu, P. H. Carr, and J. B. Thaxter, IEEE Photon. Technol. Lett. 8, 815 (1996).
  8. E. Marengo, A. J. Devaney, and E. Heyman, IEEE Trans. Antennas Propag. 45, 1098 (1997).
  9. E. Marengo, A. J. Devaney, and E. Heyman, IEEE Trans. Antennas Propag. 46, 243 (1997).
  10. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), pp. 638–651.
  11. G. M. Wysin, D. L. Smith, and A. Redondo, Phys. Rev. B 38, 12514 (1988).
  12. J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited