OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 1 — Jan. 1, 2000
  • pp: 25–27

Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm

Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz  »View Author Affiliations

Optics Letters, Vol. 25, Issue 1, pp. 25-27 (2000)

View Full Text Article

Acrobat PDF (242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate experimentally for what is to our knowledge the first time that air–silica microstructure optical fibers can exhibit anomalous dispersion at visible wavelengths. We exploit this feature to generate an optical continuum 550 THz in width, extending from the violet to the infrared, by propagating pulses of 100-fs duration and kilowatt peak powers through a microstructure fiber near the zero-dispersion wavelength.

© 2000 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.0190) Nonlinear optics : Nonlinear optics
(320.0320) Ultrafast optics : Ultrafast optics

Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1995).
  2. R. H. Stolen and A. Johnson, IEEE J. Quantum Electron. QE-22, 2154 (1986); W. Tomlinson, R. Stolen, and C. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
  3. E. A. J. Marcatili, Bell Syst. Tech. J. 54, 645 (1974) ; P. Kaiser, E. A. J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
  4. R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, in Optical Fiber Communications Conference (Optical Society of America, Washington, D.C., 1999), paper FG1.
  5. J. Knight, J. Broeng, T. Birks, and P. Russell, Science 282, 1476 (1998); J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
  7. D. Mogilevtsev, T. Birks, and P. Russell, Opt. Lett. 23, 1662 (1998); T. Monro, D. Richardson, N. Broderick, and P. Bennett, J. Lightwave Technol. 17, 1093 (1999).
  8. H. Shang, Electron. Lett. 17, 603 (1981).
  9. R. H. Stolen and C. Lin, Phys. Rev. A 17, 1448 (1978).
  10. F. Mitschke and L. Mollenauer, Opt. Lett. 11, 659 (1986).
  11. J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531 (1989) ; W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985).
  12. M. Pshenichnikov, W. de Boeij, and D. Wiersma, Opt. Lett. 19, 572 (1994); see also, for example, R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, Berlin, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited