OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 10 — May. 15, 2000
  • pp: 743–745

Mid-infrared difference–frequency generation in periodically poled KTiOAsO4 and application to gas sensing

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman  »View Author Affiliations

Optics Letters, Vol. 25, Issue 10, pp. 743-745 (2000)

View Full Text Article

Acrobat PDF (109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tunable mid-infrared radiation (3.45–3.75 µm) with a power level of 0.14 µW is generated by quasi-phase-matched difference-frequency mixing of a Nd:YAG laser and a tunable-diode laser (near 1.5 µm) in multigrating periodically poled KTiOAsO4 . The wavelength and temperature bandwidths are ≈65 nm cm and ≈62°C, respectively. The temperature-tuning slope of the phase-matched idler wavelength, -0.94 nm/°C, is almost twice that of periodically poled KTiOPO4 . We use the measurements to derive a mid-infrared-corrected Sellmeier equation for the Z axis of KTiOAsO4. The generated mid-infrared radiation is applied to sensitive high-resolution spectroscopy of the ν3 band of methane.

© 2000 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4400) Nonlinear optics : Nonlinear optics, materials
(300.6340) Spectroscopy : Spectroscopy, infrared

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Mid-infrared difference–frequency generation in periodically poled KTiOAsO4 and application to gas sensing," Opt. Lett. 25, 743-745 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
  2. Q. Chen and W. P. Risk, Electron. Lett. 30, 1516 (1994).
  3. G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, Appl. Phys. Lett. 73, 3650 (1998).
  4. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556 (1996).
  5. G. R. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, J. Phys. D 32, L49 (1999).
  6. S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, and R. L. Byer, Electron. Lett. 32, 218 (1996).
  7. K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
  8. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, Appl. Phys. Lett. 74, 914 (1999).
  9. W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, Appl. Phys. Lett. 65, 2765 (1994).
  10. L. K. Cheng and J. D. Bierlein, Ferroelectrics 142, 209 (1993).
  11. T. B. Chu and M. Broyer, J. Phys. (Paris) 46, 523 (1985).
  12. S. Guha, F.-J. Wu, and J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
  13. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
  14. A. Garashi, A. Arie, A. Skliar, and G. Rosenman, Opt. Lett. 23, 1739 (1998).
  15. D. L. Fenimore, K. L. Schepler, U. B. Ramabadran, and S. R. McPherson, J. Opt. Soc. Am. B 12, 794 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited