OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 11 — Jun. 1, 2000
  • pp: 802–804

Optimization of retardance for a complete Stokes polarimeter

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps  »View Author Affiliations

Optics Letters, Vol. 25, Issue 11, pp. 802-804 (2000)

View Full Text Article

Acrobat PDF (331 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present two figures of merit based on singular value decomposition, which can be used to assess the noise immunity of a complete Stokes polarimeter. These are used to optimize a polarimeter featuring a rotatable retarder and a fixed polarizer. A retardance of 132° (approximately three-eighths wave) and retarder orientation angles of ±51.7° and ±15.1° are found to be optimal when four measurements are used. Use of this retardance affords a factor-of-1.5 improvement in signal-to-noise ratio over systems employing a quarter-wave plate. A geometric means of visualizing the optimization process is discussed, and the advantages of the use of additional measurements are investigated. No advantage of using retarder orientation angles spaced uniformly through 360° is found over repeated measurements made at the four retarder orientation angles.

© 2000 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, "Optimization of retardance for a complete Stokes polarimeter," Opt. Lett. 25, 802-804 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. M. A. Azzam, in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Chap. 27.
  2. J. A. Shaw, Appl. Opt. 38, 3157 (1999).
  3. R. A. Chipman, in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Chap. 22.
  4. See, e.g., G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins U. Press, Baltimore, Md., 1996).
  5. R. M. A. Azzam, I. M. Elminyawi, and A. M. El-Saba, J. Opt. Soc. Am. A 5, 681 (1988).
  6. A. Ambirajan and D. C. Look, Opt. Eng. 34, 1651 (1995).
  7. A. M. El-Saba, R. M. A. Azzam, and M. A. G. Abushagur, Appl. Opt. 38, 2829 (1999).
  8. K. Brudzewski, J. Mod. Opt. 38, 889 (1991).
  9. Z. Sekera, J. Opt. Soc. Am. 47, 484 (1957).
  10. H. G. Berry, G. Gabrielse, and A. E. Livingston, Appl. Opt. 16, 3200 (1977).
  11. R. M. A. Azzam, Opt. Lett 2, 148 (1978).
  12. M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, and E. A. Sornsin, Proc. SPIE 3754, 137 (1999).
  13. Mathematica 4 (Wolfram Research, Champaign, Ill., 1999).
  14. A. Ambirajan and D. C. Look, Opt. Eng. 34, 1656 (1995).
  15. See, e.g., M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited