OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 25, Iss. 12 — Jun. 15, 2000
  • pp: 905–907

Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2 → 5D 5/2 two-photon transitions of rubidium

A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer  »View Author Affiliations


Optics Letters, Vol. 25, Issue 12, pp. 905-907 (2000)
http://dx.doi.org/10.1364/OL.25.000905


View Full Text Article

Acrobat PDF (86 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Improvements in the power level of sources near 1550 nm and in the efficiency of waveguide frequency doublers enabled us to lock a frequency-doubled source directly to the 5S1/2 → 5D5/2 two-photon transitions near 778 nm. We obtained a sufficiently powerful second-harmonic signal, exceeding 2 mW, by doubling an external-cavity diode laser that was amplified by an erbium-doped fiber amplifier in a periodically poled LiNbO3 channel waveguide. Our experimental scheme can be used for realizing compact, high-performance frequency standards near 1550 nm for fiber-optic communication and sensing applications.

© 2000 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.7370) Optical devices : Waveguides

Citation
A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, "Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2 → 5D 5/2 two-photon transitions of rubidium," Opt. Lett. 25, 905-907 (2000)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-12-905


Sort:  Author  |  Journal  |  Reset

References

  1. See, for example, M. Ohtsu, Frequency Control of Semiconductor Lasers (Wiley, New York, 1996).
  2. A. Arie, B. Lissak, and M. Tur, J. Lightwave Technol. 17, 1849 (1999).
  3. O. Ishida and H. Toba, J. Lightwave Technol. 9, 1344 (1991).
  4. M. de Labacheleire, K. Nakagawa, and M. Ohtsu, Opt. Lett. 19, 840 (1994).
  5. V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, Opt. Lett. 21, 1217 (1996).
  6. A. Bruner, A. Arie, M. A. Arbore, and M. M. Fejer, Appl. Opt. 37, 1049 (1998).
  7. W. Wang, A. M. Akulshin, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 95 (1994).
  8. D. Touahri, O. Acef, A. Clairon, J. J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, Opt. Commun. 133, 471 (1997).
  9. A. Lindgard and S. E. Nielsen, At. Data Nucl. Data Tables 19, 606 (1977).
  10. M. Zhu and R. W. Standridge, Jr., Opt. Lett. 22, 730 (1997).
  11. M. Poulin, C. Latrasse, N. Cyr, and M. Têtu, IEEE Photon. Technol. Lett. 9, 1631 (1997).
  12. M. A. Arbore and M. M. Fejer, Opt. Lett. 22, 151 (1997).
  13. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, Appl. Phys. B 63, 425 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited