OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 18 — Sep. 15, 2000
  • pp: 1379–1381

Reconstruction of the Wigner transform of a rotationally symmetric two-dimensional beam from the Wigner transform of the beam's one-dimensional sample

G. S. Agarwal and R. Simon  »View Author Affiliations

Optics Letters, Vol. 25, Issue 18, pp. 1379-1381 (2000)

View Full Text Article

Acrobat PDF (91 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coherent rotationally symmetric two-dimensional beam is essentially one-dimensional in content: It is fully determined by the one-dimensional sample along a diagonal of the circularly symmetric field distribution in a transverse plane. The linear transform that reconstructs the four-dimensional Wigner distribution of the full two-dimensional beam from the two-dimensional Wigner distribution of the one-dimensional sample is presented.

© 2000 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.0260) Physical optics : Physical optics
(350.5500) Other areas of optics : Propagation

G. S. Agarwal and R. Simon, "Reconstruction of the Wigner transform of a rotationally symmetric two-dimensional beam from the Wigner transform of the beam's one-dimensional sample," Opt. Lett. 25, 1379-1381 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. P. Wigner, Phys. Rev. 40, 749 (1932).
  2. M. J. Bastiaans, Opt. Commun. 25, 26 (1978) ; J. Opt. Soc. Am. 69, 1710 (1979); D. Dragoman, Prog. Opt. 37, 1 (1997).
  3. R. Simon, E.C.G. Sudarshan, and N. Mukunda, Phys. Rev. A 29, 3273 (1984); 31, 2419 (1985).
  4. R. Simon and N. Mukunda, J. Opt. Soc. Am. A 10, 95 (1993).
  5. D. Dragoman, Opt. Lett. 25, 281 (2000).
  6. Strictly speaking, we should add that we lose an unimportant overall phase in going to the Wigner description.
  7. R. J. Marks II, J. F. Walkup, and T. F. Krile, Appl. Opt. 16, 746 (1977); H. O. Bartelt, K. H. Brenner, and A. W. Lohmann, Opt. Commun. 32, 32 (1980); K. H. Brenner and A. W. Lohmann, Opt. Commun. 42, 310 (1982); G. E. Eichmann and B. Z. Dong, Appl. Opt. 21, 3152 (1982); G. Shabtay, D. Mendlovic, and Z. Zalevsky, Appl. Opt.APOPAI 37, 2142 (1998).
  8. R. Balmer and H. Glünder, Opt. Acta 30, 1789 (1983); M. Conner and Y. Li, Appl. Opt. 24, 3825 (1985); T. Iwai, A. K. Gupta, and T. Asakura, Opt. Commun. 58, 15 (1986).
  9. D. Gloge and D. Marcuse, J. Opt. Soc. Am. 59, 1629 (1969).
  10. See, for instance, E. D. Rainville, Special Functions (Macmillan, New York, 1963), p. 216.
  11. F. Gori, Opt. Commun. 34, 301 (1980); E. Wolf, J. Opt. Soc. Am. 72, 343 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited