OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 2 — Jan. 15, 2000
  • pp: 99–101

Image processing with the radial Hilbert transform: theory and experiments

Jeffrey A. Davis, Dylan E. McNamara, Don M. Cottrell, and Juan Campos  »View Author Affiliations

Optics Letters, Vol. 25, Issue 2, pp. 99-101 (2000)

View Full Text Article

Acrobat PDF (602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Hilbert transform is useful for image processing because it can select which edges of an input image are enhanced and to what degree the edge enhancement occurs. However, the transform operation is one dimensional and is not applicable for arbitrarily shaped two-dimensional objects. We introduce a radially symmetric Hilbert transform that permits two-dimensional edge enhancement. We implement one-dimensional, two-dimensional, and radial Hilbert transforms with a programmable phase-only liquid-crystal spatial light modulator. Experimental results are presented.

© 2000 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.0100) Image processing : Image processing
(120.2440) Instrumentation, measurement, and metrology : Filters
(200.3050) Optics in computing : Information processing
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

Jeffrey A. Davis, Dylan E. McNamara, Don M. Cottrell, and Juan Campos, "Image processing with the radial Hilbert transform: theory and experiments," Opt. Lett. 25, 99-101 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. B. Bracewell, The Fourier Transform and Its Application (McGraw-Hill, New York, 1965), Chap. 12.
  2. A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, Opt. Lett. 21, 281 (1996).
  3. A. W. Lohmann, E. Tepichin, and J. G. Ramirez, Appl. Opt. 36, 6620 (1997).
  4. J. A. Davis, D. E. McNamara, and D. M. Cottrell, Appl. Opt. 37, 6911 (1999).
  5. A. Jaroszewicz and A. Kolodziejczyk, Opt. Commun. 102, 391 (1993).
  6. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1970), p. 480.
  7. T. Sonehara and J. Amako, in Spatial Light Modulators, G. Burdge and S. Esener, eds., Vol. 14 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 165–168.
  8. J. A. Davis, P. S. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited