OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 20 — Oct. 15, 2000
  • pp: 1550–1552

Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides

S. W. Leonard, H. M. van Driel, A. Birner, U. Gösele, and P. R. Villeneuve  »View Author Affiliations

Optics Letters, Vol. 25, Issue 20, pp. 1550-1552 (2000)

View Full Text Article

Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the infrared operation of a two-dimensional photonic crystal waveguide fabricated in silicon. Measurements of the transmission spectrum reveal a large transmission bandwidth within the 3.1–5.5-μm bulk-crystal photonic bandgap and a rich resonance structure. The calculated transmission spectrum for this structure is in good agreement with the measured spectrum and predicts a 10% single-mode bandwidth for the waveguide.

© 2000 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides

S. W. Leonard, H. M. van Driel, A. Birner, U. Gösele, and P. R. Villeneuve, "Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides," Opt. Lett. 25, 1550-1552 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. John, Phys. Rev. Lett. 58, 2486 (1987).
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  3. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Olerhand, D. A. Smith, and K. Kash, J. Appl. Phys. 75, 4753 (1994).
  4. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
  5. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, Science 282, 274 (1998).
  6. B. Temelkuran and E. Ozbay, Appl. Phys. Lett. 74, 486 (1999).
  7. O. Hanaizumi, Y. Ohtera, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 777 (1999).
  8. T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).
  9. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. 76, 952 (2000).
  10. V. Lehmann, J. Electrochem. Soc. 140, 2836 (1993).
  11. U. Grüning, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett. 68, 747 (1996).
  12. A. Birner, U. Grüning, S. Otto, A. Schneider, F. Müller, V. Lehmann, H. Foll, and U. Gösele, Phy. Status Solidi A 165, 111 (1998).
  13. S. W. Leonard, H. M. van Driel, K. Busch, S. John, A. Birner, A. P. Li, F. Müller, U. Gösele, and V. Lehmann, Appl. Phys. Lett. 75, 3063 (1999).
  14. This transmission is less than that obtained with an estimate based on the measured spot size of 25mm and a waveguide width of 1.1mm (the approximate distance between pores adjacent to the waveguide), which gives a transmission of 4.8%. The transmission deficit is attributed to the clipping of the beam by the substrate and to diffraction losses in the emergent beam.
  15. The difference between the calculated and the measured spectral envelopes is caused by imperfect normalization of the experimental data and also by a difference in the termination of the crystal at the waveguide facets, which was recently shown to have a significant effect on the transmission spectrum.
  16. J. Yonekura, M. Ikeda, and T. Baba, IEEE J. Lightwave Technol. 178, 1500 (1999).
  17. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  18. A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998).
  19. D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, Phys. Rev. B 59, 1649 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited