OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 21 — Nov. 1, 2000
  • pp: 1597–1599

Interferometric method of suppressing the pattern effect in a semiconductor optical amplifier

Qianfan Xu, Minyu Yao, Yi Dong, and Jianfeng Zhang  »View Author Affiliations

Optics Letters, Vol. 25, Issue 21, pp. 1597-1599 (2000)

View Full Text Article

Acrobat PDF (89 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new idea of using change in index of refraction to suppress gain variation in a saturated semiconductor optical amplifier (SOA) is presented. This kind of gain compensation has the advantage of high speed because it involves two phenomena that always accompany each other. This compensation can be achieved with a nonsymmetrical Mach–Zehnder interferometer structure. Calculated results show that with this structure the input and output power of the SOA can be extended to nearly 10 dB from the former small-signal limit when less than 1-dB gain variation is permitted. Numerical simulations with an advanced dynamic model of the SOA agree with the calculated results.

© 2000 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(130.5990) Integrated optics : Semiconductors
(140.4480) Lasers and laser optics : Optical amplifiers
(190.5940) Nonlinear optics : Self-action effects
(250.4480) Optoelectronics : Optical amplifiers

Qianfan Xu, Minyu Yao, Yi Dong, and Jianfeng Zhang, "Interferometric method of suppressing the pattern effect in a semiconductor optical amplifier," Opt. Lett. 25, 1597-1599 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. A. Constable, I. H. White, A. N. Coles, and D. G. Cunningham, Electron. Lett. 29, 2042 (1993).
  2. K. Inoue, Electron. Lett. 34, 376 (1998).
  3. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
  4. R. J. Manning and D. A. O. Davies, Opt. Lett. 19, 889 (1994).
  5. S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32–1.
  6. L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
  7. D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
  8. G. P. Agrawal and N. A. Olsson, J. Lightwave Technol. 25, 2297 (1989).
  9. H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron. 35, 1213 (1999).
  10. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited