OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 21 — Nov. 1, 2000
  • pp: 1606–1608

Real-time detection of 13CH4 in ambient air by use of mid-infrared cavity leak-out spectroscopy

D. Kleine, H. Dahnke, W. Urban, P. Hering, and M. Mürtz  »View Author Affiliations

Optics Letters, Vol. 25, Issue 21, pp. 1606-1608 (2000)

View Full Text Article

Acrobat PDF (85 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on spectroscopic real-time detection of 13CH4 in ambient air. Our measurements were carried out by means of cavity leak-out absorption spectroscopy employing a tunable cw laser in the mid-infrared spectral region near λ = 3 μm. A CO laser in combination with tunable microwave sideband generation was used as the light source. Using a 50-cm-long ringdown cell with R = 99.98% mirrors, we achieved a detection limit of 290 parts in 1012 (ppt) 13CH4 in ambient air (integration time, 100 s). The corresponding noise-equivalent absorption coefficient was 5 × 10-9/cm.

© 2000 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6340) Spectroscopy : Spectroscopy, infrared

D. Kleine, H. Dahnke, W. Urban, P. Hering, and M. Mürtz, "Real-time detection of 13CH4 in ambient air by use of mid-infrared cavity leak-out spectroscopy," Opt. Lett. 25, 1606-1608 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. HITRAN96 database; www.hitran.com.
  2. P. J. Crutzen, Nature 350, 380 (1991).
  3. P. Bergamaschi, M. Schupp, and G. W. Harris, Appl. Opt. 33, 7704 (1994).
  4. K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
  5. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
  6. D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
  7. K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent 5,528,040 (November 7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).
  8. M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
  9. M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, Opt. Lett. 23, 58 (1998).
  10. M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
  11. C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited