OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 7 — Apr. 1, 2000
  • pp: 433–435

Contribution of evanescent waves to the far field: the atomic point of view

Adel Rahmani and Garnett W. Bryant  »View Author Affiliations

Optics Letters, Vol. 25, Issue 7, pp. 433-435 (2000)

View Full Text Article

Acrobat PDF (80 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Evanescent modes of the electromagnetic field are seldom invoked in conventional far-field optics, as their contribution far from the source (a few wavelengths) is negligible. Contradicting this fact, in recent theoretical works, based on a particular decomposition of the free-space Green tensor, it has been asserted that evanescent waves do indeed contribute to the far field, where they appear as an additional ~1/r component of the field. We provide an explicit demonstration that evanescent modes do not contribute to the power radiated to the far field by any dipolar source. First we derive an expression for the free-space field susceptibility in which contributions from evanescent and homogeneous modes are separated, and then we use linear response theory to compute the decay rate for an atomic dipole in vacuum.

© 2000 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(350.5610) Other areas of optics : Radiation

Adel Rahmani and Garnett W. Bryant, "Contribution of evanescent waves to the far field: the atomic point of view," Opt. Lett. 25, 433-435 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
  2. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, Cambridge, 1980).
  3. P. Dawson, B. A. F. Puygranier, W. Cao, and F. de Fornel, J. Microsc. 194, 578 (1999), and references therein.
  4. M. Xiao, Opt. Commun. 132, 403 (1996) ; Chem. Phys. Lett. 258, 363 (1996) ; J. Mod. Opt. 44, 327, 1609 (1997) ; Opt. Commun. 136, 213 (1997) ; J. Mod. Opt. 46, 729 (1999).
  5. E. Wolf and J. T. Foley, Opt. Lett. 23, 16 (1998).
  6. T. Setälä, M. Kaivola, and A. T. Friberg, Phys. Rev. E 59, 1200 (1999).
  7. G. C. Sherman, J. J. Stamnes, A. D. Devaney, and É Lalor, Opt. Commun. 8, 271 (1973); G. C. Sherman, J. J. Stamnes, and É. Lalor, J. Math. Phys. 17, 760 (1976).
  8. A. V. Shchegrov and P. S. Carney, J. Opt. Soc. Am. A 16, 2583 (1999).
  9. A. Banõs, Dipole Radiation in the Presence of a Conducting Half-Space (Pergamon, New York, 1966).
  10. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Pergamon, New York, 1966).
  11. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).
  12. G. S. Agarwal, Phys. Rev. A 11, 230 (1975).
  13. A. Rahmani, P. C. Chaumet, F. de Fornel, and C. Girard, Phys. Rev. A 56, 3245 (1997).
  14. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, corrected and enlarged ed. (Academic, New York, 1980).
  15. O. Keller, J. Opt. Soc. Am. B 16, 835 (1999).
  16. J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji, J. Phys. (Paris) 43, 1617 (1982).
  17. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley-Interscience, New York, 1992).
  18. J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984); 32, 2030 (1985).
  19. S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, J. Phys. B 29, 3763 (1996).
  20. L. Mandel, J. Opt. Soc. Am. 72, 1011 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited