OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 25, Iss. 9 — May. 1, 2000
  • pp: 634–636

Theoretical study of detection of a dipole emitter through an objective with high numerical aperture

Jörg Enderlein  »View Author Affiliations


Optics Letters, Vol. 25, Issue 9, pp. 634-636 (2000)
http://dx.doi.org/10.1364/OL.25.000634


View Full Text Article

Acrobat PDF (440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The problem of detecting electric dipole emitters (such as a fluorescing molecule) through a microscope objective with a high numerical aperture is considered. Exact vector-wave-optics results of the field distribution of the electromagnetic field in image space are derived. On the basis of these results, the collection-efficiency function (CEF) is calculated. This calculation is compared with a semigeometric approximation of the CEF, for which a new analytical formula is presented. The derived results are important for applications such as fluorescence correlation spectroscopy and single-molecule fluorescence detection with a confocal microscope.

© 2000 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Citation
Jörg Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25, 634-636 (2000)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-9-634


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. D. Barnes, W. B. Whitten, and J. M. Ramsey, Anal. Chem. 67, 418A (1995).
  2. R. A. Keller, W. P. Ambrose, P. M. Goodwin, J. H. Jett, J. C. Martin, and M. Wu, Appl. Spectrosc. 50, 12A (1996).
  3. S. M. Nie and R. N. Zare, Annu. Rev. Biophys. Biomol. Struct. 26, 567 (1997).
  4. J. Enderlein, W. P. Ambrose, P. M. Goodwin, and R. A. Keller, in Microsystem Technology: A Powerful Tool for Biomolecular Studies, M. Köhler, T. Mejevaia, and H. P. Saluz, eds. (Birkhäuser, Basel, Switzerland, 1999), p. 311.
  5. S. Inoue, in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, ed. (Plenum, New York, 1995), p. 1.
  6. R. H. Webb, Rep. Prog. Phys. 59, 427 (1996).
  7. N. L. Thompson, in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1991), Vol. 1, p. 337.
  8. E. Wolf, Proc. R. Soc. London Ser. A 253, 349 (1959).
  9. B. Richards and E. Wolf, Proc. R. Soc. London A 253, 358 (1959).
  10. H. Qian and E. L. Elson, Appl. Opt. 30, 1185 (1991).
  11. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Deutsch, Thun, Switzerland, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited