Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model

Not Accessible

Your library or personal account may give you access

Abstract

A Monte Carlo model of the ultrasonic modulation of multiply scattered coherent light in scattering media is provided. The model is based on two mechanisms: the ultrasonic modulation of the index of refraction, which causes a modulation of the optical path lengths between consecutive scattering events, and the ultrasonic modulation of the displacements of scatterers, which causes a modulation of optical path lengths with each scattering event. Multiply scattered light accumulates modulated optical path lengths along its path. Consequently, the intensity of the speckles that are formed by the multiply scattered light is modulated. The contribution from the index of refraction is comparable with the contribution from displacement when the acoustic-wave vector is less than a critical fraction of the transport mean free path and becomes increasingly greater than the contribution from displacement beyond this critical point. This Monte Carlo model agrees well with an independent analytical model for isotropically scattering media. Both mechanisms are coherent phenomena, requiring the use of a coherent light source.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Modeling of nonphase mechanisms in ultrasonic modulation of light propagation

Quan Liu, Stephen Norton, and Tuan Vo-Dinh
Appl. Opt. 47(20) 3619-3630 (2008)

Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry

Anna L. Petoukhova, Wiendelt Steenbergen, and Frits F. M. de Mul
Opt. Lett. 26(19) 1492-1494 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved