OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 26, Iss. 17 — Sep. 1, 2001
  • pp: 1317–1319

Figure of merit for near-velocity-matched traveling-wave modulators

Aref Chowdhury and Leon McCaughan  »View Author Affiliations


Optics Letters, Vol. 26, Issue 17, pp. 1317-1319 (2001)
http://dx.doi.org/10.1364/OL.26.001317


View Full Text Article

Acrobat PDF (74 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive a relationship between the bandwidth and active length and a figure of merit for velocity- and near-velocity-matched lithium niobate traveling-wave electro-optic modulators. The figure of merit is given by the bandwidth per unit drive voltage squared and is independent of the length of the device. Alternatively, this figure of merit can be described by its inverse, which is proportional to the device’s switching energy.

© 2001 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate

Citation
Aref Chowdhury and Leon McCaughan, "Figure of merit for near-velocity-matched traveling-wave modulators," Opt. Lett. 26, 1317-1319 (2001)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-17-1317


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Technol. MTT-30, 1121–1137 (1982).
  2. R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. QE-20, 301–309 (1984).
  3. S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, "8–Gbit/s transmission experiment over 68 km of optical fiber using a Ti:LiNbO 3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
  4. S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO 3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
  5. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, “Low drive voltage, broad-band LiNbO3 modulators with and without ridges,” J. Lightwave Technol. 17, 2551–2555 (1999).
  6. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
  7. F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications III B, I. P. Kaminow T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 377–462.
  8. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO 3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
  9. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO 3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
  10. T. A. Ramadan, M. Levy, and R. M. Osgood, Jr., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3" Appl. Phys. Lett. 76, 1407–1409 (2000).
  11. I.-L. Gheorma, P. Savi, and R. M. Osgood, Jr., “Thin layer design of x-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett. 12, 1618–1620 (2000).
  12. G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
  13. H. Chung, W. S. C. Chang, and E. L. Adler, “Modeling and optimization of traveling-wave LiNbO3 interferometric modulators,” IEEE J. Quantum Electron. 27, 608–617 (1991).
  14. S. K. Korotky, Bell Laboratories, Lucent Technologies, Holmdel, N.J. (personal communication, March, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited