OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 26, Iss. 17 — Sep. 1, 2001
  • pp: 1370–1372

Low-loss infrared dielectric material system for broadband dual-range omnidirectional reflectivity

B. Temelkuran, E. L. Thomas, J. D. Joannopoulos, and Y. Fink  »View Author Affiliations


Optics Letters, Vol. 26, Issue 17, pp. 1370-1372 (2001)
http://dx.doi.org/10.1364/OL.26.001370


View Full Text Article

Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A material system for broadband thermal IR applications based on branched polyethylene and tellurium is introduced. This system exhibits low absorption losses from 3.5 to 35 µm , has a large index contrast, and is readily deposited as a thin film. These unique features were used to investigate the formation of an omnidirectional reflector that exhibits two distinct, broadband omnidirectional ranges at thermal wavelengths. Reflectivity measurements are presented that confirm the existence of two omnidirectional ranges in the solar atmospheric windows extending from 8 to 12 µm and from 4.5 to 5.5 µm . The measurements are in good agreement with simulations.

© 2001 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.1480) Optical devices : Bragg reflectors
(310.0310) Thin films : Thin films

Citation
B. Temelkuran, E. L. Thomas, J. D. Joannopoulos, and Y. Fink, "Low-loss infrared dielectric material system for broadband dual-range omnidirectional reflectivity," Opt. Lett. 26, 1370-1372 (2001)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-17-1370


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  2. For a recent review, see articles in Photonic Crystals and Light Localization in the 21st Century, C. M. Soukoulis, ed., Vol. 563 of NATO ASI Series (Kluwer, Dordrecht, The Netherlands, 2001).
  3. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 50, 1945 (1994).
  4. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Phys. Rev. B 62, R2243 (2000).
  5. S. Noda, Physica B 279, 142 (2000).
  6. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, J. Lightwave Technol. 18, 1402 (2000).
  7. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
  8. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
  9. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, J. Lightwave Technol. 17, 2018 (1999).
  10. C. J. Pouchert, The Aldrich Library of FT-IR Spectra (Aldrich Chemical, Milwaukee, Wis., 1985), p. 1204B.
  11. H. A. Szymanski, Interpreted Infrared Spectra (Plenum, New York, 1964), Vol. 1, pp. 19 and 35.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited