OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 19 — Oct. 1, 2001
  • pp: 1504–1506

Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film

François Treussart, André Clouqueur, Carl Grossman, and Jean-François Roch  »View Author Affiliations

Optics Letters, Vol. 26, Issue 19, pp. 1504-1506 (2001)

View Full Text Article

Acrobat PDF (151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We used scanning confocal microscopy to study the fluorescence from a single terrylene molecule embedded in a thin polymer film of polymethyl methacrylate, at room temperature, with a high signal-to-background ratio. The photon-pair correlation function g(2)(τ) exhibits perfect photon antibunching at τ = 0 and a limit of 1.3, compatible with bunching associated with the molecular triplet state. Application of this molecular system to a triggered single-photon source based on single-molecule fluorescence is investigated.

© 2001 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(270.5290) Quantum optics : Photon statistics

François Treussart, André Clouqueur, Carl Grossman, and Jean-François Roch, "Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film," Opt. Lett. 26, 1504-1506 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Phys. Rev. Lett. 85, 1330 (2000).
  2. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, Phys. Rev. A 62, 063817 (2000).
  3. A. Imamogĝlu and Y. Yamamoto, Phys. Rev. Lett. 72, 210 (1994).
  4. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature 397, 500 (1999).
  5. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, Phys. Rev. Lett. 83, 2722 (1999).
  6. F. de Martini, G. Di Giuseppe, and M. Marrocco, Phys. Rev. Lett. 76, 900 (1996).
  7. S. C. Kitson, P. Jonsson, J. G. Rarity, and P. R. Tapster, Phys. Rev. A 58, 620 (1998).
  8. L. Fleury, J.-M. Segura, G. Zumofeln, B. Hecht, and U. Wild, Phys. Rev. Lett. 84, 1184 (2000).
  9. B. Lounis and W. E. Moerner, Nature 407, 491 (2000).
  10. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, Opt. Lett. 25, 1294 (2000).
  11. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000).
  12. P. Michler, A. Imamoĝlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Nature 406, 968 (2000).
  13. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamogĝlu, Science 290, 2282 (2000).
  14. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Phys. Rev. Lett. 86, 1502 (2001).
  15. S. Reynaud, Ann. Phys. (Paris) 8, 315 (1983).
  16. See, for example, K. D. Weston, P. J. Carson, J. A. DeAro, and S. K. Buratto, Chem. Phys. Lett. 308, 58 (1999).
  17. D. A. Vanden Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, Science 277, 1074 (1997).
  18. At room temperature, the coherence terms in the optical Bloch equations vanish and these equations reduce to rate equations that can be solved analytically see, for example, B. de Bartolo, Optical Interactions in Solids (Wiley, New York, 1968).
  19. J. Bernard, L. Fleury, H. Talon, and M. Orrit, J. Chem. Phys. 98, 850 (1993).
  20. J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Science 272, 255 (1996).
  21. K. H. Drexhage, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974), Vol. XII, pp. 165–232.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited