OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 26, Iss. 2 — Jan. 15, 2001
  • pp: 93–95

Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy

Chris B. Schaffer, André Brodeur, José F. García, and Eric Mazur  »View Author Affiliations


Optics Letters, Vol. 26, Issue 2, pp. 93-95 (2001)
http://dx.doi.org/10.1364/OL.26.000093


View Full Text Article

Acrobat PDF (172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using tightly focused femtosecond laser pulses of just 5 nJ, we produce optical breakdown and structural change in bulk transparent materials and demonstrate micromachining of transparent materials by use of unamplified lasers. We present measurements of the threshold for structural change in Corning 0211 glass as well as a study of the morphology of the structures produced by single and multiple laser pulses. At a high repetition rate, multiple pulses produce a structural change dominated by cumulative heating of the material by successive laser pulses. Using this cumulative heating effect, we write single-mode optical waveguides inside bulk glass, using only a laser oscillator.

© 2001 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3440) Lasers and laser optics : Laser-induced breakdown
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Citation
Chris B. Schaffer, André Brodeur, José F. García, and Eric Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-2-93


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Du, X. Liu, and G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
  2. B. C. Stuart, and M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, J. Opt. Soc. Am. B 13, 459 (1996).
  3. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, Phys. Rev. Lett. 80, 4076 (1998).
  4. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wahmer, and E. E. B. Campbell, Appl. Phys. A 65, 367 (1997).
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
  6. E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
  7. C. B. Schaffer, A. Brodeur, N. Nishimura, and E. Mazur, Proc SPIE 3616, 143 (1999).
  8. C. B. Schaffer, A. Brodeur, N. Nishimura, and E. Mazur, in Digest of Quantum Electronics and Laser Science Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 232.
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
  10. K. Miura, J. Qui, H. Inouye, T. Mitsuyu, and K. Hirao, Appl. Phys. Lett. 71, 3329 (1997).
  11. C. B. Schaffer, A. Brodeur, J. F. Garcia, W. A. Leight, and E. Mazur, in Digest of Conference on Lasers and Electro Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 375.
  12. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, Opt. Lett. 24, 1311 (1999).
  13. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 630.
  14. We minimize focusing aberrations by (1) using microscope objectives (Zeiss, Inc.) that are compensated for aberrations in the Corning 0211 glass, (2) focusing at the minimum aberration depth in the sample (170mm), and (3) uniformly filling the full aperture of the objective. For NA>0.65, the threshold energies shown in Fig. decrease as 1/NA2, indicating that the focusing is diffraction limited.
  15. N. Bloembergen, IEEE J. Quantum Electron. QE-10, 375 (1974).
  16. M. J. Soileau, W. E. Williams, M. Mansour, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
  17. J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
  18. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignang, and E. Delevaque, J. Lightwave Technol. 15, 1329 (1997).
  19. S. H. Cho, U. Morgner, F. X. Kartner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, in Digest of Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 470.
  20. A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, in Digest of Conference on Lasers and Electro Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 469.
  21. A prism compressor is used to compensate for the dispersion in the microscope objective. The duration of the oscillator pulse at the focus was not measured, but the optical breakdown threshold was slightly lower than that for a pulse known to have a 100-fs duration at the focus. With only a simple prism compressor for dispersion compensation, a pulse duration as short as 15 fs has been achieved at the focus of high-NA objectives; see D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Müller, Opt. Lett. 23, 1046 (1998).
  22. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University, London, 1959), p. 256.
  23. K. P. Chen, A. Oettl, P. R. Herman, and R. S. Marjoribanks, in Digest of Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 357.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited