OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 20 — Oct. 15, 2001
  • pp: 1618–1620

Monitoring the ultrafast electric field change at a mid-infrared plasma Bragg mirror

R. Bratschitsch, T. Müller, N. Finger, G. Strasser, K. Unterrainer, and C. Sirtori  »View Author Affiliations

Optics Letters, Vol. 26, Issue 20, pp. 1618-1620 (2001)

View Full Text Article

Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electric field change of a femtosecond mid-infrared (MIR) pulse reflected by a new type of Bragg mirror is directly measured by time-resolved cross-correlation spectroscopy. The refractive-index contrast of the plasma Bragg mirror is achieved by use of different doping levels of only one type of semiconductor material (n+ -doped GaAs and undoped GaAs). The direct measurement of the time dependence of the electric field of a reflected MIR pulse permits the observation of a noninstantaneous response of a Bragg mirror compared with a metallic surface, which is due to the penetration of the pulse into the multilayer structure.

© 2001 Optical Society of America

OCIS Codes
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7150) Ultrafast optics : Ultrafast spectroscopy

R. Bratschitsch, T. Müller, N. Finger, G. Strasser, K. Unterrainer, and C. Sirtori, "Monitoring the ultrafast electric field change at a mid-infrared plasma Bragg mirror," Opt. Lett. 26, 1618-1620 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, Appl. Phys. Lett. 45, 348 (1984).
  2. C. L. Felix, W. W. Bewley, I. Vurgaftman, J. R. Meyer, L. Goldberg, D. H. Chow, and E. Selvig, Appl. Phys. Lett. 71, 3483 (1997).
  3. U. Keller, W. H. Knox, and H. Roskos, Opt. Lett. 15, 1377 (1990).
  4. R. Szipöcs, K. Ferencz, Ch. Spielmann, and F. Krausz, Opt. Lett. 19, 201 (1994).
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. S. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
  6. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, Phys. Rev. Lett. 85, 740 (2000).
  7. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 79, 2967 (1997).
  8. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 78, 1215 (1997).
  9. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  10. M. Joffre, A. Bonvalet, A. Migus, and J.-L. Martin, Opt. Lett. 21, 964 (1996).
  11. R. A. Kaindl, D. C. Smith, and T. Elsaesser, Opt. Lett. 23, 861 (1998).
  12. A. Bonvalet, M. Joffre, J.-L. Martin, and A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
  13. The small tilt of the sample causes a time delay of the pulses (path difference, 2d) impinging upon the gold or the Bragg mirror part of the sample when the sample is vertically translated between the two measurements. The origin of this additional phase shift, which is linear in frequency, has been experimentally confirmed by use of a piece of undoped GaAs substrate partially covered with gold.
  14. W. H. Knox, N. M. Pearson, K. D. Li, and Ch. A. Hirlimann, Opt. Lett. 13, 574 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited