OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 26, Iss. 3 — Feb. 1, 2001
  • pp: 128–130

Design of double-coated optical fibers to minimize long-term hydrostatic-pressure-induced microbending losses

Sham-Tsong Shiue  »View Author Affiliations


Optics Letters, Vol. 26, Issue 3, pp. 128-130 (2001)
http://dx.doi.org/10.1364/OL.26.000128


View Full Text Article

Acrobat PDF (91 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of double-coated optical fibers to minimize long-term hydrostatic-pressure-induced microbending losses is investigated. Microbending loss in these fibers is dominated by compressive radial stress at the interface between the glass fiber and the primary coating, which is a function of the material properties of the polymeric coatings and their thickness. To minimize long-term hydrostatic-pressure-induced microbending losses, one should decrease the Young's modulus and Poisson ratio of the primary coating but increase the radius, Young's modulus, Poisson ratio, and relaxation time of the secondary coating. Alternatively, the radius and relaxation time of the primary coating have their optimum values.

© 2001 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2400) Fiber optics and optical communications : Fiber properties

Citation
Sham-Tsong Shiue, "Design of double-coated optical fibers to minimize long-term hydrostatic-pressure-induced microbending losses," Opt. Lett. 26, 128-130 (2001)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-3-128


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. B. Keck, Proc. IEEE 62, 649 (1974).
  2. W. B. Gardner, Bell Syst. Tech. J. 54, 457 (1975).
  3. W. A. Gambling, D. N. Payne, and H. Matsumura, Appl. Opt. 14, 1538 (1975).
  4. R. Olshansky, Appl. Opt. 14, 20 (1975).
  5. D. Gloge, Bell Syst. Tech. J. 54, 245 (1975).
  6. E. Suhir, J. Lightwave Technol. 8, 863 (1990).
  7. S. T. Shiue and S. Lee, J. Appl. Phys. 72, 18 (1992).
  8. S. T. Shiue, J. Appl. Phys. 76, 7695 (1994).
  9. S. T. Shiue, J. Appl. Phys. 78, 6384 (1995).
  10. S. T. Shiue, Opt. Quantum Electron. 28, 1379 (1996).
  11. S. T. Shiue, J. Appl. Phys. 73, 526 (1993).
  12. S. T. Shiue, K. I. Chen, and S. D. Tseng, J. Opt. Commun. 18, 10 (1997).
  13. S. T. Shiue, IEEE Photon. Technol. Lett. 4, 746 (1992).
  14. S. T. Shiue, J. Opt. Commun. 15, 144 (1994).
  15. S. T. Shiue and Y. K. Tu, J. Appl. Phys. 86, 4085 (1999).
  16. S. T. Shiue and C. S. Hsu, J. Appl. Phys. 88, 3840 (2000).
  17. S. T. Shiue, “Relaxation of the axial strain induced stresses in double-coated optical fibers,” J. Composites (to be published).
  18. I. H. Shames and F. A. Cozzarelli, Elastic and Inelastic Stress Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1992).
  19. C. Hall, Polymer Materials: An Introduction for Technologists and Scientists (Wiley, New York, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited