OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 6 — Mar. 15, 2001
  • pp: 385–387

Nonlinear optical generation and detection of ultrashort electrical pulses in transmission lines

Ajay Nahata  »View Author Affiliations

Optics Letters, Vol. 26, Issue 6, pp. 385-387 (2001)

View Full Text Article

Acrobat PDF (85 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear optical generation and detection of subpicosecond electrical pulses on coplanar transmission lines is demonstrated. The electrical pulses are generated by optical rectification of ultrashort optical pulses and detected by electro-optic sampling. Both processes are the result of a second-order nonlinear optical response that occurs in the same poled polymer medium. A bipolar temporal waveform with a FWHM duration of 180 fs for the positive lobe that was measured after a propagation distance of 125 μm was observed. Pulse broadening was minimized by careful attention to the device structure.

© 2001 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.5470) Materials : Polymers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.2250) Ultrafast optics : Femtosecond phenomena

Ajay Nahata, "Nonlinear optical generation and detection of ultrashort electrical pulses in transmission lines," Opt. Lett. 26, 385-387 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. H. Auston, in Ultrashort Laser Pulses: Generation and Applications, W. Kaiser, ed. (Springer-Verlag, Berlin, 1993), p. 183, and references therein.
  2. D. W. van der Weide, Appl. Phys. Lett. 65, 881 (1994).
  3. W. H. Knox, J. E. Henry, K. W. Goossen, K. D. Li, B. Tell, D. A. B. Miller, D. S. Chemla, A. C. Gossard, J. English, and S. Schmitt-Rink, IEEE J. Quantum Electron. 25, 2586 (1989).
  4. U. D. Keil and D. R. Dykaar, Appl. Phys. Lett. 61, 1504 (1992).
  5. M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. Rev. Lett. 9, 446 (1962).
  6. A. Nahata and T. F. Heinz, Opt. Lett. 23, 867 (1998).
  7. J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, Appl. Phys. Lett. 41, 211 (1982).
  8. D. Grischkowsky, I. N. Duling III, J. C. Chen, and C.-C. Chi, Phys. Rev. Lett. 59, 1663 (1987).
  9. D. R. Dykaar, A. F. J. Levi, and M. Anzlowar, Appl. Phys. Lett. 57, 1123 (1990).
  10. M. Y. Frankel, R. H. Voelker, and J. N. Hilfiker, IEEE Trans. Microwave Theory Tech. 42, 396 (1994).
  11. H.-J. Cheng, J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, IEEE Trans. Microwave Theory Tech. 42, 2399 (1994).
  12. R. W. McGowan, D. Grischkowsky, and J. A. Misewich, Appl. Phys. Lett. 71, 2842 (1997).
  13. C. Wu, K. W. Beeson, P. Ferm, C. Knapp, M. J. McFarland, A. Nahata, J. Shan, and J. T. Yardley, Proc. 1993 MRS Bull. 328, 477 (1994).
  14. K. D. Singer, J. E. Sohn, and S. J. Lalama, Appl. Phys. Lett. 49, 248 (1986).
  15. A. Nahata, C. Wu, and J. T. Yardley, J. Opt. Soc. Am. B 10, 1553 (1993).
  16. Q. Zhang, M. Canva, and G. Stegeman, Appl. Phys. Lett. 73, 912 (1998).
  17. U. Strom, J. R. Hendrikson, R. J. Wagner, and P. C. Taylor, Solid State Commun. 15, 1871 (1974).
  18. A. Nahata, D. H. Auston, C. Wu, and J. T. Yardley, Appl. Phys. Lett. 67, 1358 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited