OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 7 — Apr. 1, 2001
  • pp: 414–416

Planar holographic optical processing devices

T. W. Mossberg  »View Author Affiliations

Optics Letters, Vol. 26, Issue 7, pp. 414-416 (2001)

View Full Text Article

Acrobat PDF (84 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-domain optical processing implemented through linear spectral filtering offers unique potential for future high-bandwidth communications systems. One key to realization of this potential is the development of robust, cost-effective, fully integrated filtering devices. A new spectral filtering device concept, derived from the unique properties of index holograms stamped or otherwise written in thin planar waveguide slabs, is described. The holograms that are described provide for high-resolution spectral filtering while at the same time mapping general input spatial waveforms to desired output waveforms

© 2001 Optical Society of America

OCIS Codes
(200.4740) Optics in computing : Optical processing
(230.7390) Optical devices : Waveguides, planar

T. W. Mossberg, "Planar holographic optical processing devices," Opt. Lett. 26, 414-416 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. R. Babbitt and T. W. Mossberg, Opt. Commun. 148, 23 (1998).
  2. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
  3. Y. L. Chang and M. E. Marhic, J. Lightwave Technol. 10, 1952 (1992).
  4. D. D. Sampson, R. A. Griffin, and D. A. Jackson, J. Lightwave Technol. 12, 2001 (1994).
  5. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, Electron. Lett. 33, 1890 (1997).
  6. W. D. Cornwell, N. Wada, K.-I. Kitayama, and I. Andonovic, Electron. Lett. 34, 204 (1998).
  7. J. Capmany and G. Mallea, J. Lightwave Technol. 17, 570 (1999).
  8. J. A. Salehi, A. M. Weiner, and J. P. Heritage, J. Lightwave Technol. 8, 478 (1990).
  9. M. E. Marhic, J. Lightwave Technol. 11, 854 (1993).
  10. Yu. T. Mazurenko, Sov. Technol. Phys. Lett. 10, 228 (1984).
  11. Yu. T. Mazurenko, Appl. Phys. B 50, 101 (1990).
  12. Yu. T. Mazurenko, Opt. Eng. 31, 739 (1992).
  13. T. W. Mossberg, Opt. Lett. 7, 77 (1982).
  14. Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
  15. W. R. Babbitt and T. W. Mossberg, Opt. Lett. 20, 910 (1995).
  16. K. D. Merkel and W. R. Babbitt, Opt. Lett. 21, 1102 (1996).
  17. L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, IEEE J. Quantum Electron. 34, 2117 (1998).
  18. L. R. Chen, P. W. E. Smith, and C. Martign de Sterke, Appl. Opt. 38, 4500 (1999).
  19. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, J. J. Munroe, and J. N. Sweetser, IEEE Photon. Technol. Lett. 11, 1283 (1999).
  20. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, Electron. Lett. 35, 1096 (1999).
  21. H. Fathallah, L. A. Rusch, and S. LaRochelle, J. Lightwave Technol. 17, 397 (1999).
  22. C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, and K. J. Orlowsky, J. Lightwave Technol. 8, 748 (1990).
  23. K. Kato and Y. Tohmori, IEEE J. Sel. Top. Quantum Electron. 6, 4 (2000).
  24. T. Miya, IEEE J. Sel. Top. Quantum Electron. 6, 38 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited