OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 8 — Apr. 15, 2001
  • pp: 497–499

Peering into darkness with a vortex spatial filter

Grover A. Swartzlander, Jr.  »View Author Affiliations

Optics Letters, Vol. 26, Issue 8, pp. 497-499 (2001)

View Full Text Article

Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I propose to use as a window the dark core of an optical vortex to examine a weak background signal hidden in the glare of a bright coherent source. Applications such as the detection of an astronomical object, forward-scattered radiation, and incoherent light are described whereby signal enhancements of at least 7 orders of magnitude may be achieved.

© 2001 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(100.5090) Image processing : Phase-only filters
(120.1880) Instrumentation, measurement, and metrology : Detection
(290.0290) Scattering : Scattering
(350.1260) Other areas of optics : Astronomical optics

Grover A. Swartzlander, Jr., "Peering into darkness with a vortex spatial filter," Opt. Lett. 26, 497-499 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965).
  2. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  3. J. F. Nye and M. V. Berry, Proc. R. Soc. London Ser. A 336, 165 (1974).
  4. N. B. Baranova, B. Ya. Zel'dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkunov, Pis'ma Zh. Eksp. Teor. Fiz. 33, 206 (1981) JETP Lett. 33, 195 (1981).
  5. J. F. Nye, Proc. R. Soc. London Ser. A 361, 21 (1978).
  6. A. M. Deykoon, M. S. Soskin, and G. A. Swartzlander, Jr., Opt. Lett. 24, 1224 (1999).
  7. G. A. Swartzlander, Jr., and C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
  8. A. W. Snyder, L. Poladian, and D. J. Mitchell, Opt. Lett. 17, 789 (1992).
  9. For a recent review, see M. Vasnetsov and K. Staliunas, eds., Optical Vortices, Vol. 228 of Horizons in World Physics (Nova Science, Huntington, N.Y., 1999).
  10. See pp. 1581–1586 in F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. D. Maker, Chaos Solitons Fractals 4, 1575–1596 (1994).
  11. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).
  12. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, Jr., J. Opt. Soc. Am. B 15, 2226 (1998).
  13. Calculations were made with a DEC Alpha workstation and a fast-Fourier transform algorithm on a 512×512 numerical grid.
  14. C. A. Beichman, ed., A Road Map for the Exploration of Neighboring Planetary Systems JPL Publ. 96–22 (Jet Propulsion Laboratory, Pasadena, Calif., 1996).
  15. J. R. P. Angel and N. J. Woolf, Astrophys. J. 475, 373 (1997).
  16. The intensity of the planetary signal across a small aperture (Rap/Rdiff< < 1) is relatively constant, and thus the transmitted power varies as (Rap)2. However, relation 2 predicts that the transmitted power for the stellar vortex will increase as (Rap)8.72 for m=4. Thus we find that when the relative aperture size Rap/Rdiff is decreased from 0.19 to 0.1, the optimum enhancement factor, Pp/Ps, increases by a factor of (1.9)6.72. In this case we estimate that Pp/Ps≈2×107.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited