OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 26, Iss. 9 — May. 1, 2001
  • pp: 575–577

Sonoluminescence: nature’s smallest blackbody

G. Vazquez, C. Camara, S. Putterman, and K. Weninger  »View Author Affiliations


Optics Letters, Vol. 26, Issue 9, pp. 575-577 (2001)
http://dx.doi.org/10.1364/OL.26.000575


View Full Text Article

Acrobat PDF (89 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The transduction of sound into light through the implosion of a bubble of gas leads to a flash of light whose duration is delineated in picoseconds. Combined measurements of spectral irradiance, Mie scattering, and flash width (as determined by time-correlated single-photon counting) suggest that sonoluminescence from hydrogen and noble-gas bubbles is radiation from a blackbody with temperatures ranging from 6000 K (H2) to 20,000 K (He) and a surface of emission whose radius ranges from 0.1 µm (He) to 0.4 µm (Xe) . The state of matter that would admit photon–matter equilibrium under such conditions is a mystery.

© 2001 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission
(300.6170) Spectroscopy : Spectra
(350.5400) Other areas of optics : Plasmas

Citation
G. Vazquez, C. Camara, S. Putterman, and K. Weninger, "Sonoluminescence: nature’s smallest blackbody," Opt. Lett. 26, 575-577 (2001)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-9-575


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966, 1967), Vols. 1 and 2.
  2. R. Hiller, S. Putterman, and B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992).
  3. R. Hiller and S. Putterman, Phys. Rev. Lett. 75, 3549 (1995).
  4. R. Hiller and S. Putterman, Phys. Rev. Lett. 77, 2345 (1996) erratum of Ref. 3.
  5. B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep. 281, 67 (1997).
  6. R. A. Hiller, S. J. Putterman, and K. R. Weninger, Phys. Rev. Lett. 80, 1090 (1998).
  7. T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara III, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
  8. The data are acquired from bubbles that are acoustically driven in sealed cylindrical resonators constructed with quartz walls (Figs. and), suprasil walls (Fig.), and stainless-steel endcaps. The spectrometer (Acton 308i) was calibrated with quartz tungsten halogen and D2 lamps. No spectra are corrected for transmission of water or quartz. For quartz, but not suprasil, there is absorption for wavelengths below 300 nm that rises to 25% at 200 nm. We attribute the bump in the data at 550 nm and the dip at 360 nm to documented errors in the manufacturer-supplied calibration of our lamps (see Fig. 75 of Ref.).
  9. The spectra reported here have the same spectral density and detailed shape as reported in previous papers. But in the course of recalibrating the system we find that the scale for the y axis, namely, spectral radiance, is generally lower, being down by roughly a factor of 12 compared with what was reported in Refs. and. We have verified the new data calibrated against various lamp standards with photon counting through bandpass filters. Previously quoted values of photons per flash remain unchanged. We believe that the mistake in scaling the y axis is greater than can be accounted for by resonator variability, drive level, or thermal drift (see the discussion in Ref.). The corrected value of radiance plus our ability to measure flash width and bubble size combine to make possible the quantitative comparisons with blackbody radiation that are proposed here.
  10. J. Maddox, Nature 361, 397 (1993).
  11. B. P. Barber and P. J. Putterman, Nature 352, 318 (1991).
  12. B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
  13. C. C. Wu and P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993).
  14. W. C. Moss, D. B. Clarke, and D. A. Young, Science 276, 1398 (1997).
  15. S. Putterman, Sci. Am. 272(2), 46 (1995).
  16. D. Hammer and L. Fromhold, Phys. Rev. Lett. 85, 1326 (2000).
  17. S. Hilgenfeldt, S. Grossman, and D. Lohse, Nature 398, 402 (1999).
  18. S. J. Putterman and K. R. Weninger, Ann. Rev. Fluid Mech. 32, 445 (2000).
  19. G. Vazquez, C. Camara, S. Putterman, and K. Weninger, “Blackbody spectra for sonoluminescing hydrogen bubbles” (submitted to Phys. Rev. Lett.), also present data that indicate an ambient radius of ~3.0mm.
  20. R. Hiller, “Spectrum of single bubble sonoluminescence,” Ph.D. dissertation (University of California, Los Angeles, Los Angeles, Calif., 1995).
  21. W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
  22. H. P. Baltes, Am. J. Phys. 42, 505 (1974).
  23. B. E. Kalensher, J. Appl. Phys. 56, 1347 (1984).
  24. R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
  25. O. Baghdassarian, B. Tabbert, and G. A. Williams, in “Spectrum of luminescence from bubble collapse: light from a plasma,” (submitted to Phys. Rev. Lett.), report blackbody-like spectral densities from laser-generated plasmas in water and from the ensuing cavitation collapse.
  26. E. A. Rohlfing, J. Chem. Phys. 89, 6103 (1988).
  27. U. Frenzel, A. Roggenkamp, and D. Kreisle, Chem. Phys. Lett. 240, 109 (1995).
  28. P. Heszler, J. O. Carlsson, and P. Demirev, J. Chem. Phys. 107, 10440 (1997).
  29. K. Hansen and E. E. B. Campbell, Phys. Rev. E 58, 5477 (1998).
  30. K. Weninger, C. G. Camara, and S. J. Putterman, Phys. Rev. E 63, 016310 (2001), describe the 1- and 11-MHz techniques.
  31. S. Ruuth, S. Putterman, and B. Merriman, “Hard sphere model of a sonoluminescing bubble,” (submitted to Phys. Rev. Lett.).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited