OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 10 — May. 15, 2002
  • pp: 800–802

Spatial coherence and information entropy in optical vortex fields

G. S. Agarwal and J. Banerji  »View Author Affiliations

Optics Letters, Vol. 27, Issue 10, pp. 800-802 (2002)

View Full Text Article

Acrobat PDF (359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how a vortex structure manifests itself in the one-dimensional projection of a vortex field. We calculate the extent of spatial coherence and entropy of such projections. We quantify the spatial coherence and discuss the properties of the Wigner functions for the projected field.

© 2002 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1640) Coherence and statistical optics : Coherence
(200.3050) Optics in computing : Information processing

G. S. Agarwal and J. Banerji, "Spatial coherence and information entropy in optical vortex fields," Opt. Lett. 27, 800-802 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. F. Nye and M. V. Berry, Proc. R. Soc. London Ser. A 165, 336 (1974).
  2. J. M. Vaughan and D. V. Willetts, Opt. Commun. 73, 403 (1979).
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
  4. K. T. Gahagan and G. A. Swartzlander, Opt. Lett. 21, 827 (1996).
  5. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
  6. For a comprehensive review, see L. Allen, M. J. Padgett, and M. Babiker, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1999), Vol. 39, p. 291.
  7. J. Scheuer and M. Orenstein, Science 285, 230 (1999).
  8. R. M. Jenkins, J. Banerji, and A. R. Davies, J. Opt. A 3, 527 (2001).
  9. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).
  10. It is also possible for vortex-carying fields to be partially coherent, as described recently by S. A. Ponomarenko, J. Opt. Soc. Am. A 18, 150 (2001).
  11. See, for example, www.photonics.com/Spectra/Tech/Nov99/techVortices.html.
  12. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).
  14. M. Harris, C. A. Hill, and J. M. Vaughan, Opt. Commun. 106, 161 (1994).
  15. R. Simon and N. Mukunda, J. Opt. Soc. Am. A 17, 2440 (2000).
  16. The expression for the Wigner function of the full two-dimensional field [Eq. 1] is given in R. Simon and G. S. Agarwal, Opt. Lett. 25, 1313 (2000).
  17. G. Gbur, T. D. Visser, and E. Wolf, Phys. Rev. Lett. 88, 013901 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited