OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 10 — May. 15, 2002
  • pp: 845–847

Nonlinear refraction spectroscopy in resonance with laser lines in solids

S. M. Lima, H. Jiao, *L. A. O. Nunes, and T. Catunda  »View Author Affiliations

Optics Letters, Vol. 27, Issue 10, pp. 845-847 (2002)

View Full Text Article

Acrobat PDF (106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a simple extension of the Z-scan technique that permits a spectral line-shape measurement of the real and the imaginary parts of n2 . In this technique the sample is placed at the peak position of the usual Z-scan curve while the laser frequency is scanned. We employed this method to investigate the nonlinear susceptibility of the R lines of ruby and alexandrite, using a cw dye laser. This susceptibility can be explained by the resonant interaction and by a nonresonant contribution that is due to the difference in polarizability between Cr3+ excited and ground states. For ruby, the nonresonant contribution to the technique is 1 order of magnitude larger than the resonant contribution. However, for alexandrite both contributions are comparable, and their interference leads to a shift between n2 and n2′′ spectra that is not observed in ruby.

© 2002 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6420) Spectroscopy : Spectroscopy, nonlinear

S. M. Lima, H. Jiao, *L. A. O. Nunes, and T. Catunda, "Nonlinear refraction spectroscopy in resonance with laser lines in solids," Opt. Lett. 27, 845-847 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. C. Powell and S. A. Payne, Opt. Lett. 15, 1233 (1990).
  2. A. Agnesi, G. Gabetta, and G. C. Reali, J. Appl. Phys. 71, 6207 (1992).
  3. O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, J. Opt. Soc. Am. B 15, 2276 (1998).
  4. J. M. Hendricks, D. P. Shepherd, H. L. Offerhaus, M. Kaczmarek, R. W. Eason, and M. J. Damzen, Opt. Commun. 190, 357 (2001).
  5. P. Sillard, A. Brignon, and J. P. Huignard, J. Opt. Soc. Am. B 14, 2049 (1997).
  6. L. G. Luo, R. F. Peng, and P. L. Chu, Opt. Commun. 156, 275 (1998).
  7. S. A. Boothroyd, A. Skirtach, L. Chan, and A. Akmaloni, IEEE J. Quantum Electron. 35, 39 (1999).
  8. G. R. Atkins, Z. Brodzeli, and J. W. Arkwright, Opt. Lett. 23, 603 (1998).
  9. T. Catunda, J. P. Andreeta, and J. Castro, Appl. Opt. 25, 2391 (1986).
  10. T. Catunda and L. A. O. Nunes, Phys. Rev. B 45, 10, 087 (1992).
  11. L. C. Oliveira and S. C. Zilio, Appl. Phys. Lett. 65, 2121 (1994).
  12. V. Pilla, P. R. Impinnisi, and T. Catunda, Appl. Phys. Lett. 70, 817 (1997).
  13. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited