OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 11 — Jun. 1, 2002
  • pp: 903–905

Multiplexed fiber Fabry–Perot temperature sensor system using white-light interferometry

Yichao Chen and Henry F. Taylor  »View Author Affiliations

Optics Letters, Vol. 27, Issue 11, pp. 903-905 (2002)

View Full Text Article

Acrobat PDF (311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel monitoring system for a fiber Fabry–Perot interferometer (FFPI) temperature sensor has yielded a resolution of 0.013 °C (0.0025 fringe). Light from a broadband source passes through a scanned Michelson interferometer and is reflected from a FFPI to produce a fringe pattern, the temporal position of which is proportional to a change in the optical length of the fiber interferometer. A second Michelson interferometer with a distributed-feedback laser source is used to correct for variations in the translation rate of the motor-driven scanning mirror. Coherence multiplexing of three such sensors has also been demonstrated.

© 2002 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Yichao Chen and Henry F. Taylor, "Multiplexed fiber Fabry–Perot temperature sensor system using white-light interferometry," Opt. Lett. 27, 903-905 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Beheim, Appl. Opt. 24, 2335 (1985).
  2. C. M. Davis, C. J. Zarobila, and J. D. Rand, Proc. SPIE 906, 114 (1988).
  3. M. Singh, C. J. Tuck, and G. F. Fernando, Smart Mater. Struct. 8, 549 (1999).
  4. S. C. Kaddu, S. F. Collins, and D. J. Booth, Meas. Sci. Technol. 10, 416 (1999).
  5. H. S. Choi, H. F. Taylor, and C. E. Lee, Opt. Lett. 22, 1814 (1997).
  6. T. Li, A. Wang, K. Murphy, and R. Claus, Opt. Lett. 20, 785 (1995).
  7. C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
  8. M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, IEEE Photon. Technol. Lett. 3, 564 (1991).
  9. H. F. Taylor, in Fiber Optic Sensors, F. T. Y. Yu and S. Yin, eds. (Marcel Dekker, New York, 2002).
  10. S. Grosswig, E. Hurtig, K. Kuh, and F. Rudolph, Oil Gas Eur. Mag. 27(4), 31 (2001).
  11. T. Unneland, Y. Manin, and F. Kuchuk, SPE Reservoir Eval. Eng. (June 1988), 224.
  12. W. Lee, J. Lee, C. Henderson, H. F. Taylor, R. James, C. E. Lee, V. Swenson, R. A. Atkins, and W. G. Gemeiner, Appl. Opt. 38, 1110 (1999).
  13. R. C. Tennyson, A. A. Mufti, S. Rizkalla, G. Tadros, and B. Benmokrane, Smart Mater. Struct. 10, 560 (2001).
  14. G. Wang, K. Pran, G. Sagvolden, G. B. Havsgard, A. E. Jensen, G. A. Johnson, and S. T. Vohra, Smart Mater. Struct. 10, 472 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited