OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 27, Iss. 11 — Jun. 1, 2002
  • pp: 915–917

Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor  »View Author Affiliations


Optics Letters, Vol. 27, Issue 11, pp. 915-917 (2002)
http://dx.doi.org/10.1364/OL.27.000915


View Full Text Article

Acrobat PDF (75 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Modulational instability (MI) is employed in a self-induced ring cavity configuration based on highly nonlinear dispersion-shifted fiber (HNL DSF) and an erbium-doped fiber amplifier to generate a continuous-wave 262-GHz train of 365-fs optical solitons. The laser operates around 1540 nm, with an average output power of 15 mW. MI is achieved at a low threshold as a result of low average cavity dispersion and high fiber nonlinearity. It is shown that, because of the normal dispersion of the HNL DSF, the solitons exist in the average soliton regime.

© 2002 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7090) Ultrafast optics : Ultrafast lasers

Citation
C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, "Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train," Opt. Lett. 27, 915-917 (2002)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-11-915


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980).
  2. K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
  3. K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
  4. M. Nakazawa, K. Suzuki, and H. A. Haus, Phys. Rev. A 38, 5193 (1988).
  5. S. Coen and M. Haelterman, Opt. Lett. 26, 39 (2001).
  6. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, Opt. Lett. 20, 2009 (1995).
  7. E. Yoshida and M. Nakazawa, Opt. Lett. 22, 1409 (1997).
  8. T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MA3.
  9. M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, Opt. Fiber Technol. 4, 204 (1998).
  10. N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, Electron. Lett. 28, 455 (1992).
  11. K. J. Blow and N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited