Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nonlinear dispersion in a coupled-resonator optical waveguide

Not Accessible

Your library or personal account may give you access

Abstract

The propagation of an optical pulse in a coupled-resonator optical waveguide may be calculated nonperturbatively to all orders of dispersion, in the conventional tight-binding approximation, even though the dispersion relationship is nonlinear. Working in this framework, we discuss limits of the physical parameters and approximations to the exact formulation that highlight the conditions under which pulse distortion can be minimized. The results are fundamental to the design of coupled-resonator optical waveguides and are also relevant to other applications of the tight-binding method.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Dispersion characteristics of coupled-resonator optical waveguides

Shayan Mookherjea
Opt. Lett. 30(18) 2406-2408 (2005)

Coupled-resonator optical waveguide:?a proposal and analysis

Amnon Yariv, Yong Xu, Reginald K. Lee, and Axel Scherer
Opt. Lett. 24(11) 711-713 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved