OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 27, Iss. 14 — Jul. 15, 2002
  • pp: 1205–1207

Reciprocity relations for reflected amplitudes

G. S. Agarwal and S. Dutta Gupta  »View Author Affiliations


Optics Letters, Vol. 27, Issue 14, pp. 1205-1207 (2002)
http://dx.doi.org/10.1364/OL.27.001205


View Full Text Article

Acrobat PDF (82 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive general reciprocity relations that are applicable to a large class of one-dimensional stratified systems. These results reveal clearly the role of absorption and spatial symmetry in the nonreciprocity of reflection observed in a recent experiment by Armitage et al. [Phys. Rev. B 58, 15, 376 (1998)]. We also present examples of structures for which such nonreciprocal effects can be significant.

© 2002 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(260.3160) Physical optics : Interference

Citation
G. S. Agarwal and S. Dutta Gupta, "Reciprocity relations for reflected amplitudes," Opt. Lett. 27, 1205-1207 (2002)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-14-1205


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Armitage, M. S. Skolnik, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, Phys. Rev. B 58, 15, 376 (1998).
  2. For a recent review of semiconductor microcavities, see, for example, G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, Rev. Mod. Phys. 71, 1591 (1999).
  3. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999), Secs. 13.3 and 13.4.
  4. M. Nieto-Vesperinas and E. Wolf, J. Opt. Soc. Am. A 3, 2038 (1986).
  5. An extensive review of reciprocity relations in the context of photonic bandgap structures is given by J. P. Dowling, IEE Proc. Optoelectron. 145, 420 (1998).
  6. Vacuum field Rabi splittings, are now understood also in terms of classic dispersion theory.,
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990).
  8. S. D. Gupta and G. S. Agarwal, Opt. Commun. 115, 597 (1995).
  9. J. Sánchez-Mondrágon, N. B. Narozhny, and J. H. Eberly, Phys. Rev. Lett. 51, 550 (1983).
  10. G. S. Agarwal, Phys. Rev. Lett. 53, 1732 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited