OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 15 — Aug. 1, 2002
  • pp: 1285–1287

Absorption and subsequent emission saturation of two-photon excited materials: theory and experiment

R. Schroeder and B. Ullrich  »View Author Affiliations

Optics Letters, Vol. 27, Issue 15, pp. 1285-1287 (2002)

View Full Text Article

Acrobat PDF (100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The saturation of two-photon absorption and the subsequent photoluminescence of matter under ultrafast laser pulse excitation are studied. For this purpose the experimental results of using two organic conjugated polymers as model substances are discussed theoretically. One model is based on the commonly used hyperbolic approach, whereas the new theory introduced correctly describes the saturation in two-photon spectroscopy and fits the experiment closely. The new model permits microscopic analysis of the absorption saturation process and makes possible an estimate of the two-photon absorption coefficient from the saturation intensity.

© 2002 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(190.7220) Nonlinear optics : Upconversion
(250.3680) Optoelectronics : Light-emitting polymers
(250.5230) Optoelectronics : Photoluminescence

R. Schroeder and B. Ullrich, "Absorption and subsequent emission saturation of two-photon excited materials: theory and experiment," Opt. Lett. 27, 1285-1287 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y. Shen, D. Jakubcyk, F. Xu, J. Swiatkiewicz, P. N. Prasad, and B. A. Reinhardt, Appl. Phys. Lett. 76, 1 (2000).
  2. A. J. Campbell, D. D. C. Bradley, H. Antoniadis, M. Inbasekaran, W. W. Wu, and E. P. Woo, Appl. Phys. Lett. 76, 1734 (2000).
  3. R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, Appl. Phys. Lett. 77, 1262 (2000).
  4. U. Scherf and K. Müllen, Makromol. Chem. Rapid Commun. 12, 489 (1991).
  5. M. Wohlgenannt, W. Graupner, G. Leising, and Z. V. Vardeny, Phys. Rev. B 60, 5321 (1999).
  6. F. Li, Y. Song, S. Liu, C. Li, Y. Wu, X. Zuo, C. Yu, and P. Zhu, J. Appl. Phys. 82, 2004 (1997).
  7. N. Sanz, A. Ibanez, Y. Morel, and P. L. Baldeck, Appl. Phys. Lett. 78, 2569 (2001).
  8. M. Gu, J. O. Amistoso, A. Toriumi, M. Irie, and S. Kawata, Appl. Phys. Lett. 79, 148 (2001).
  9. S. H. Guang, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, Appl. Phys. Lett. 67, 2433 (1995).
  10. J.-F. Lami and C. Hirlimann, Phys. Rev. B 60, 4763 (1999).
  11. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985), p. 25.
  12. D. Beljonne, H. F. Wittmann, A. Köhler, S. Graham, M. Younus, J. Lewis, P. R. Raithby, M. S. Khan, R. H. Friend, and J. L. Brédas, J. Chem. Phys. 105, 3868 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited