OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 15 — Aug. 1, 2002
  • pp: 1327–1329

Temperature-controlled surface plasmon resonance in VO 2 nanorods

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, Jr.  »View Author Affiliations

Optics Letters, Vol. 27, Issue 15, pp. 1327-1329 (2002)

View Full Text Article

Acrobat PDF (277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties of VO2 nanoparticles formed in an amorphous SiO2 host by stoichiometric ion implantation of vanadium and oxygen and thermal annealing have been determined and correlated with the particle size and morphology. The results show that that the temperature-controlled semiconductor-to-metal phase transition of the VO2 nanophase precipitates turns on the classical surface plasmon resonance, with specific features that depend on the size and aspect ratio of the VO2 particles. This effect improves the optical contrast between the metallic and semiconducting states in the near-IR region of the spectrum as a result of dielectric confinement that is due to the SiO2 host. A fiber-optic application is demonstrated, as is the ability to control the characteristics of the phase transition by using ion implantation to dope the VO2 nanoparticles with tungsten or titanium ions.

© 2002 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(130.6010) Integrated optics : Sensors
(160.6840) Materials : Thermo-optical materials
(350.4990) Other areas of optics : Particles

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, Jr., "Temperature-controlled surface plasmon resonance in VO 2 nanorods," Opt. Lett. 27, 1327-1329 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
  2. J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
  3. D. Paquet and P. Leroux-Hugon, Phys. Rev. B 22, 5284 (1980).
  4. M. Gupta, A. J. Freeman, and D. E. Ellis, Phys. Rev. B 16, 3338 (1977).
  5. R. M. Wentzcovitch, W. W. Shultz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
  6. T. Chrismann, B. Felde, W. Niessner, D. Schalch, and A. Sharmann, Solid Thin Films 287, 134 (1996).
  7. J. F. DeNatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
  8. C. G. Granqvist, Phys. Scr. 32, 401 (1985).
  9. M. Fukuma, S. Zembutsu, and S. Miyazawa, Appl. Opt. 22, 265 (1983).
  10. W. R. Roach, Appl. Phys. Lett. 19, 453 (1971).
  11. C. E. Lee, R. A. Atkins, W. N. Giler, and H. F. Taylor, Appl. Opt. 28, 4511 (1989).
  12. Heat transfer considerations may limit the speed of the reverse transition.
  13. A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
  16. R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglund, and L. C. Feldman, “Synthesis and characterization of size-controlled VO2 nanocrystals in a pulsed silica matrix,” J. Appl. Phys. (to be published).
  17. The Rayleigh condition strictly requires that ka≤1/20. The VO2 particles are closer to ka≤1/5. However, as proved by a complete calculation with Mie scattering theory for spherical particles, the deviations within the present approximation do not alter the main qualitative features.
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  19. H. W. Verleur, A. S. Baker, Jr., and C. N. Berglund, Phys. Rev. 172, 788 (1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited