OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 17 — Sep. 1, 2002
  • pp: 1522–1524

Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths

A. Talneau, Ph. Lalanne, M. Agio, and C. M. Soukoulis  »View Author Affiliations

Optics Letters, Vol. 27, Issue 17, pp. 1522-1524 (2002)

View Full Text Article

Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design and fabricate a new taper structure for adiabatic mode transformation in two-dimensional photonic-crystal waveguides patterned into a GaInAsP confining layer. The taper efficiency is validated by measurement of a reduction of the reflection between an access ridge and a photonic-crystal guide with one missing row from 6% to less than 1%. This taper is then incorporated into a 60° bend; simulations demonstrate a 90% transmission between multimode ports.

© 2002 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves

A. Talneau, Ph. Lalanne, M. Agio, and C. M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Talneau, L. Le Gouezigou, and N. Bouadma, Opt. Lett. 26, 1259 (2001).
  2. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, Opt. Lett. 26, 1019 (2001).
  3. S. Olivier, H. Benisty, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Osterlé, Appl. Phys. Lett. 79, 2514 (2001).
  4. T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654 (1999).
  5. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, Appl. Phys. Lett. 80, 547 (2002).
  6. M. Lončar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Schere, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
  7. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and D. J. Joannopoulos, Opt. Lett. 26, 286 (2001).
  8. H. Kosaka, T. Kawashima, A. Tomina, T. Sato, and S. Kawakami, Appl. Phys. Lett. 76, 268 (2000).
  9. Ph. Lalanne and A. Talneau, “Strucutre à cristal photonique pour la conversion de mode,” French patent 0115057 (November 21, 2001).
  10. M. Palamaru and Ph. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
  11. Ph. Lalanne and A. Talneau, Opt. Express 10, 354 (2002) ; www.opticsexpress.org.
  12. A. Mekis, S. Fan, and J. D. Joannopoulos, J. Lightwave Technol. 19, 861 (2001).
  13. Y. Xu, R. K. Lee, and A. Yariv, Opt. Lett. 25, 755 (2000).
  14. A. Mekis, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998).
  15. A. Tavlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  16. The peak transmission is 95%. The less-than-100% transmission is probably due to the mismatch between the rectangular Finite-difference time-domain mesh and the sixfold symmetry of the PC lattice. The two sections of the PCW are not equivalent in the numerical simulation.
  17. A. Chutinan, M. Okano, and S. Noda, Appl. Phys. Lett. 80, 1698 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited