OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 27, Iss. 2 — Jan. 15, 2002
  • pp: 110–112

Spatial quantum noise in singly resonant second-harmonic generation

P. Lodahl and M. Saffman  »View Author Affiliations

Optics Letters, Vol. 27, Issue 2, pp. 110-112 (2002)

View Full Text Article

Acrobat PDF (109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the spatial distribution of quantum noise in singly resonant second-harmonic generation. Calculations are performed below threshold for spatial modulational instability. For parameters for which the intracavity fields are modulationally stable the spatial spectrum shows maximum squeezing at k=0, whereas under conditions of modulational instability we find maximum squeezing at finite wave number |k|=kc, where kc corresponds to the classical critical wave number.

© 2002 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

P. Lodahl and M. Saffman, "Spatial quantum noise in singly resonant second-harmonic generation," Opt. Lett. 27, 110-112 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. J. Kimble, Phys. Rep. 219, 227 (1992).
  2. G.-L. Oppo, M. Brambilla, and L. A. Lugiato, Phys. Rev. A 49, 2028 (1994).
  3. M. Vaupel, A. Maître, and C. Fabre, Phys. Rev. Lett. 83, 5278 (1999).
  4. R. A. Fuerst, D.-M. Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz, Phys. Rev. Lett. 78, 2756 (1997).
  5. L. A. Lugiato and F. Castelli, Phys. Rev. Lett. 68, 3284 (1992).
  6. L. A. Lugiato and A. Gatti, Phys. Rev. Lett. 70, 3868 (1993).
  7. G. Grynberg and L. A. Lugiato, Opt. Commun. 101, 69 (1993).
  8. E. M. Nagasako, R. W. Boyd, and G. S. Agarwal, Phys. Rev. A 55, 1412 (1997).
  9. M. I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999).
  10. A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999).
  11. S.-K. Choi, M. Vasilyev, and P. Kumar, Phys. Rev. Lett. 83, 1938 (1999).
  12. S.-K. Choi, M. Vasilyev, and P. Kumar, Phys. Rev. Lett. 84, 1361 (2000), erratum of Ref.
  13. C. Fabre, J. B. Fouet, and A. Maître, Opt. Lett. 25, 76 (2000).
  14. P. Lodahl and M. Saffman, Phys. Rev. A 60, 3251 (1999).
  15. A. Gatti and L. Lugiato, Phys. Rev. A 52, 1675 (1995).
  16. M. J. Collett and R. B. Levien, Phys. Rev. A 43, 5068 (1991).
  17. R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
  18. C. Cabrillo, J. L. Roldán, and P. García-Fernández, J. Opt. Soc. Am. B 17, 440 (2000).
  19. Note that the model studied in Ref. did not include the effect of phase mismatch on the second harmonic, which is described by a factor of g in Eq. 1b.
  20. C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985).
  21. S. Reynaud and A. Heidmann, Opt. Commun. 71, 209 (1989).
  22. The abrupt transition between k=0 and k finite as a result of the delta functions is an artifact of the assumption of an infinitely extended plane-wave pump. Allowing for a pump beam of finite extent would ease the transition.
  23. J. Jeffers and G.-L. Oppo, Phys. Rev. A 60, 2393 (1999).
  24. L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited